DynCon(name, par_matrix, total = c(100, 100), choice = "cdf",
interval = 0.05, const_par = c(NULL, NULL))
More details about distributions and parameters are as follows:
Beta: Beta distribution. Shape parameters a, b, a>0, b>0.
Cauchy: Cauchy distribution. Location parameter a. Scale parameter b, b>0.The order of parameters is a, b. See Note Below.
Con_Uniform: Continuous Uniform distribution. Location parameter a, the lower bound of the range. Parameter b, the upper bound of the range. The order of parameters is a, b. See Note Below.
Chi_Square: Chi-squared Distribution. Shape parameter n, degrees of freedom.
Exponential: Exponential Distribution. The scale parameter b, b>0.
F_Dis: F(central) Distribution. Shape parameters m, n, positive integers.
Gamma: Gamma distribution. Shape parameter a, a>0.Scale parameter b, b>0.The order of parameters is a, b. See Note below.
Inverse_Gaussian: Inverse Gaussian (Wald) distribution. Scale parameter lamda, lamda>0. Location parameter mu, mu>0. The order of parameters is lamda,mu. See Note below.
Laplace: Laplace distribution. Location parameter a. Scale parameter b, b>0.The order of parameters is a, b. See Note below.
Logistic: Logistic distribution. Location parameter a, scale parameter b, b>0.The order of parameters is a, b. See Note below.
Lognormal: Lognormal distribution. Scale parameter mu, mu>0.Shape parameter sigma, sigma>0.The order of parameters is mu, sigma. See Note below.
Normal: Normal distribution. Location parameter mu. Scale parameter sigma, sigma>0. The order of parameters is mu, sigma. See Note below.
Pareto: Pareto distribution. Location parameter a, a>0.shape parameter b, b>0.The order of parameters is a, b. See Note below.
Rayleigh: Rayleigh distribution. Scale parameter b>0.
Student_t:Student's t distribution. Shape parameter n, degrees of freedom, n is a positive integer.
choice='cdf',const_par=c(0,1))
DynCon(name=Inverse_Gaussian,par_matrix=matrix(c(1,12,10,20),2,2)
,choice='Kurtosis',const_par=c(2,3))
DynCon(name=Exponential,par_matrix=matrix(c(1,20),2,1),choice=
'Skewness')
DynCon(name=Normal,par_matrix=matrix(c(1,20,10,20),2,2),choice=
'Variance',const_par=c(0,1))
DynCon(name=Logistic,par_matrix=matrix(c(1,12,10,20),2,2),choice
='Kurtosis',const_par=c(2,3))
Run the code above in your browser using DataLab