Usage
EBHMMNBfun(Data,NgVector=NULL,Conditions, sizeFactors,
PriorFC=1.5,homo=TRUE, maxround=5,
Pi0=NULL, Tran=NULL,NoTrend=FALSE, NumTranStage=3,
FCParam=NULL, AlphaIn=NULL,BetaIn=NULL,
StateNames=c("Up","NC","Down"),
EM=TRUE, UpdateParam=TRUE, Print=TRUE,
OnlyQ=FALSE,WithinCondR=TRUE,
PenalizeLowMed=TRUE, PenalizeLowMedQt=.2,PenalizeLowMedVal=10)
Arguments
Data
input data, rows are genes/isoforms and
columns are samples
NgVector
Ng vector; NULL for gene level data
Conditions
A factor indicates the condition
(time/spatial point) which each sample belongs to.
sizeFactors
a vector indicates library size
factors
Tran
initial values for transition matrices
Pi0
initial values for starting probabilities
NumTranStage
number of states
PriorFC
target FC for gridient change
StateNames
name of the hidden states
homo
whether the chain is assumed to be
homogenious
maxround
max number of iteration
AlphaIn,BetaIn
If the parameters are known and the
user doesn't want to estimate them from the data, user
may specify them here.
NoTrend
if NoTrend=TRUE, initial transition
probabilities will be set to be equal
EM
Whether estimate the prior parameters of the
beta distribution by EM
UpdateParam
Whether update starting probabilities
and transition probabilities
OnlyQ
If OnlyQ=TRUE, the function will only return
estimated q's.
WithinCondR
By defining WithinCondR=TRUE,
estimation of r's are obtained within each condition.
(WithinCondR=FALSE is not suggested here)
Print
Whether print the elapsed-time while running
the test.
PenalizeLowMed,PenalizeLowMedQt,PenalizeLowMedVal
Transcripts
with median quantile < = PenalizeLowMedQt will be
penalized