## Use with an output from the EFAtools::EFA function, both with type EFAtools
EFA_mod <- EFA(test_models$baseline$cormat, N = 500, n_factors = 3,
type = "EFAtools", method = "PAF", rotation = "promax")
SL_EFAtools <- SL(EFA_mod, type = "EFAtools", method = "PAF")
# \donttest{
## Use with an output from the psych::fa function with type psych in SL
fa_mod <- psych::fa(test_models$baseline$cormat, nfactors = 3, n.obs = 500,
fm = "pa", rotate = "Promax")
SL_psych <- SL(fa_mod, type = "psych", method = "PAF")
# }
## Use more flexibly by entering a pattern matrix and phi directly (useful if
## a factor solution found with another program should be subjected to SL
## transformation)
## For demonstration, take pattern matrix and phi from an EFA output
## This gives the same solution as the first example
EFA_mod <- EFA(test_models$baseline$cormat, N = 500, n_factors = 3,
type = "EFAtools", method = "PAF", rotation = "promax")
SL_flex <- SL(EFA_mod$rot_loadings, Phi = EFA_mod$Phi, type = "EFAtools",
method = "PAF")
# \donttest{
## Use with a lavaan second-order CFA output
# Create and fit model in lavaan (assume all variables have SDs of 1)
mod <- 'F1 =~ V1 + V2 + V3 + V4 + V5 + V6
F2 =~ V7 + V8 + V9 + V10 + V11 + V12
F3 =~ V13 + V14 + V15 + V16 + V17 + V18
g =~ F1 + F2 + F3'
fit <- lavaan::cfa(mod, sample.cov = test_models$baseline$cormat,
sample.nobs = 500, estimator = "ml")
SL_lav <- SL(fit, g_name = "g")
# }
Run the code above in your browser using DataLab