Learn R Programming

⚠️There's a newer version (2.2.0) of this package.Take me there.

EGAnet (version 0.9.6)

Exploratory Graph Analysis - A Framework for Estimating the Number of Dimensions in Multivariate Data Using Network Psychometrics

Description

An implementation of the Exploratory Graph Analysis (EGA) framework for dimensionality assessment. EGA is part of a new area called network psychometrics that focuses on the estimation of undirected network models in psychological datasets. EGA estimates the number of dimensions or factors using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community analysis. A bootstrap method for verifying the stability of the estimation is also available. The fit of the structure suggested by EGA can be verified using confirmatory factor analysis and a direct way to convert the EGA structure to a confirmatory factor model is also implemented. Documentation and examples are available. Golino, H. F., & Epskamp, S. (2017) . Golino, H. F., & Demetriou, A. (2017) Golino, H., Shi, D., Garrido, L. E., Christensen, A. P., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2018) . Christensen, A. P. & Golino, H.F. (2019) .

Copy Link

Version

Install

install.packages('EGAnet')

Monthly Downloads

3,309

Version

0.9.6

License

GPL (>= 3.0)

Maintainer

Hudson Golino

Last Published

July 13th, 2020

Functions in EGAnet (0.9.6)

EGA

Applies the Exploratory Graph Analysis technique
CFA

CFA Fit of EGA Structure
LCT

Loadings Comparison Test
boot.wmt

bootEGA Results of wmt2Data
Embed

Time-delay Embedding
EGA.fit

EGA Optimal Model Fit using the Total Entropy Fit Index (tefi)
EBICglasso.qgraph

EBICglasso from qgraph 1.4.4
EGA.estimate

A Wrapper Function for EGA
bootEGA

EGAnet-package

EGAnet--package
ega.wmt

EGA WMT-2 Data
toy.example

Toy Example Data
vn.entropy

Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
plots

S3Methods for Plotting
dynamic.plot

entropyFit

Entropy Fit Index
dynEGA

Dynamic Exploratory Graph Analysis
node.redundant

Detects Redundant Nodes in a Network
net.scores

Network Scores
cmi

Conditional Mutual Information
optimism

Optimism Data
dimStability

glla

Generalized Local Linear Approximation
tefi

Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
net.loads

Network Loadings
summarys

S3Methods for Summaries
itemStability

simDFM

Simulate data following a Dynamic Factor Model
dnn.weights

Loadings Comparison Test Deep Learning Neural Network Weights
residualEGA

prints

S3Methods for Printing
intelligenceBattery

Intelligence Data
depression

Depression Data
sim.dynEGA

sim.dynEGA Data
node.redundant.names

node.redundant.combine

Combines Redundant Nodes
wmt2

WMT-2 Data