Learn R Programming

⚠️There's a newer version (2.2.0) of this package.Take me there.

EGAnet (version 1.1.0)

Exploratory Graph Analysis – a Framework for Estimating the Number of Dimensions in Multivariate Data using Network Psychometrics

Description

Implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA is part of a new area called network psychometrics that uses undirected network models for the assessment of psychometric properties. EGA estimates the number of dimensions (or factors) using graphical lasso or Triangulated Maximally Filtered Graph (TMFG) and a weighted network community detection algorithm. A bootstrap method for verifying the stability of the dimensions and items in those dimensions is available. The fit of the structure suggested by EGA can be verified using Entropy Fit Indices. A novel approach called Unique Variable Analysis (UVA) can be used to identify and reduce redundant variables in multivariate data. Network loadings, which are roughly equivalent to factor loadings when the data generating model is a factor model, are available. Network scores can also be computed using the network loadings. Dynamic EGA (dynEGA) will estimate dimensions from time series data for individual, group, and sample levels. Golino, H., & Epskamp, S. (2017) . Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2020) . Christensen, A. P., & Golino, H. (under review) . Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020) . Christensen, A. P. & Golino, H. (2021) . Christensen, A. P., Garrido, L. E., & Golino, H. (under review) . Golino, H., Christensen, A. P., Moulder, R. G., Kim, S., & Boker, S. M. (under review) .

Copy Link

Version

Install

install.packages('EGAnet')

Monthly Downloads

3,309

Version

1.1.0

License

GPL (>= 3.0)

Maintainer

Hudson Golino

Last Published

May 10th, 2022

Functions in EGAnet (1.1.0)

ega.wmt

EGA WMT-2 Data
dnn.weights

Loadings Comparison Test Deep Learning Neural Network Weights
TMFG

Triangulated Maximally Filtered Graph
UVA

Unique Variable Analysis
compare.EGA.plots

Visually Compares EGAnet plots
depression

Depression Data
dynEGA

Dynamic Exploratory Graph Analysis
dynEGA.ind.pop

Dynamic EGA used in the mctest.ergoInfo function
hierEGA

Hierarchical EGA
residualEGA

Residualized EGA
louvain

Louvain Community Detection Algorithm
itemStability

Item Stability Statistics from bootEGA
invariance

Measurement Invariance of EGA Structure
boot.wmt

bootEGA Results of wmt2Data
boot.ergoInfo

Bootstrap Test for the Ergodicity Information Index
riEGA

Random-Intercept EGA
prime.num

Prime Numbers through 100,000
entropyFit

Entropy Fit Index
mctest.ergoInfo

Monte-Carlo Test for the Ergodicity Information Index
methods.section

Automated Methods Section for EGAnet Objects
net.loads

Network Loadings
wmt2

WMT-2 Data
tefi

Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
summarys

S3Methods for Summaries
intelligenceBattery

Intelligence Data
bootEGA

Dimension Stability Analysis of EGA
color_palette_EGA

EGA Color Palettes
ergoInfo

Ergodicity Information Index
network.descriptives

Descriptive Statistics for Networks
net.scores

Network Scores
toy.example

Toy Example Data
vn.entropy

Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
prints

S3Methods for Printing
glla

Generalized Local Linear Approximation
sim.dynEGA

sim.dynEGA Data
plots

S3Methods for Plotting
optimism

Optimism Data
totalCor

Total Correlation
totalCorMat

Total Correlation Matrix
simDFM

Simulate data following a Dynamic Factor Model
EGAnet-package

EGAnet--package
CFA

CFA Fit of EGA Structure
Embed

Time-delay Embedding
LCT

Loadings Comparison Test
EGA

Applies the Exploratory Graph Analysis technique
EGA.fit

EGA Optimal Model Fit using the Total Entropy Fit Index (tefi)
EBICglasso.qgraph

EBICglasso from qgraph 1.4.4
EGA.estimate

A Sub-routine Function for EGA
dimensionStability

Dimension Stability Statistics from bootEGA