# Load data
wmt <- wmt2[,7:24]
if (FALSE) {
# Standard EGA example
boot.wmt <- bootEGA(
data = wmt, iter = 100, # recommended 500
plot.typicalStructure = FALSE, # No plot for CRAN checks
type = "parametric", ncores = 2
)
# Standard item stability
wmt.is <- itemStability(boot.wmt)
# Produce Methods section
methods.section(
boot.wmt,
stats = "itemStability"
)
# EGA fit example
boot.wmt.fit <- bootEGA(
data = wmt, iter = 500,
EGA.type = "EGA.fit",
type = "parametric", ncores = 2
)
# EGA fit item stability
wmt.is.fit <- itemStability(boot.wmt.fit)
# Hierarchical EGA example
boot.wmt.hier <- bootEGA(
data = wmt, iter = 500,
EGA.type = "hierEGA",
type = "parametric", ncores = 2
)
# Hierarchical EGA item stability
wmt.is.hier <- itemStability(boot.wmt.hier)
# Random-intercept EGA example
boot.wmt.ri <- bootEGA(
data = wmt, iter = 500,
EGA.type = "riEGA",
type = "parametric", ncores = 2
)
# Random-intercept EGA item stability
wmt.is.ri <- itemStability(boot.wmt.ri)}
Run the code above in your browser using DataLab