Estimates the number of communities (dimensions) of a dataset or correlation matrix using a network estimation method (Golino & Epskamp, 2017; Golino et al., 2020). After, a community detection algorithm is applied (Christensen et al., 2023) for multidimensional data. A unidimensional check is also applied based on findings from Golino et al. (2020) and Christensen (2023)
EGA(
data,
n = NULL,
corr = c("auto", "cor_auto", "cosine", "pearson", "spearman"),
na.data = c("pairwise", "listwise"),
model = c("BGGM", "glasso", "TMFG"),
algorithm = c("leiden", "louvain", "walktrap"),
uni.method = c("expand", "LE", "louvain"),
plot.EGA = TRUE,
verbose = FALSE,
...
)
Returns a list containing:
A matrix containing a network estimated using
link[EGAnet]{network.estimation}
A vector representing the community (dimension) membership
of each node in the network. NA
values mean that the node
was disconnected from the network
A scalar of how many total dimensions were identified in the network
The zero-order correlation matrix
Number of cases in data
An ordered matrix of item allocation
link[EGAnet]{tefi}
for the estimated structure
Plot output if plot.EGA = TRUE
Matrix or data frame. Should consist only of variables to be used in the analysis. Can be raw data or a correlation matrix
Numeric (length = 1).
Sample size if data
provided is a correlation matrix
Character (length = 1).
Method to compute correlations.
Defaults to "auto"
.
Available options:
"auto"
--- Automatically computes appropriate correlations for
the data using Pearson's for continuous, polychoric for ordinal,
tetrachoric for binary, and polyserial/biserial for ordinal/binary with
continuous. To change the number of categories that are considered
ordinal, use ordinal.categories
(see polychoric.matrix
for more details)
"cor_auto"
--- Uses cor_auto
to compute correlations.
Arguments can be passed along to the function
"cosine"
--- Uses cosine
to compute cosine similarity
"pearson"
--- Pearson's correlation is computed for all
variables regardless of categories
"spearman"
--- Spearman's rank-order correlation is computed
for all variables regardless of categories
For other similarity measures, compute them first and input them
into data
with the sample size (n
)
Character (length = 1).
How should missing data be handled?
Defaults to "pairwise"
.
Available options:
"pairwise"
--- Computes correlation for all available cases between
two variables
"listwise"
--- Computes correlation for all complete cases in the dataset
Character (length = 1).
Defaults to "glasso"
.
Available options:
"BGGM"
--- Computes the Bayesian Gaussian Graphical Model.
Set argument ordinal.categories
to determine
levels allowed for a variable to be considered ordinal.
See ?BGGM::estimate
for more details
"glasso"
--- Computes the GLASSO with EBIC model selection.
See EBICglasso.qgraph
for more details
"TMFG"
--- Computes the TMFG method.
See TMFG
for more details
Character or
igraph
cluster_*
function (length = 1).
Defaults to "walktrap"
.
Three options are listed below but all are available
(see community.detection
for other options):
"leiden"
--- See cluster_leiden
for more details
"louvain"
--- By default, "louvain"
will implement the Louvain algorithm using
the consensus clustering method (see community.consensus
for more information). This function will implement
consensus.method = "most_common"
and consensus.iter = 1000
unless specified otherwise
"walktrap"
--- See cluster_walktrap
for more details
Character (length = 1).
What unidimensionality method should be used?
Defaults to "louvain"
.
Available options:
"expand"
--- Expands the correlation matrix with four variables correlated 0.50.
If number of dimension returns 2 or less in check, then the data
are unidimensional; otherwise, regular EGA with no matrix
expansion is used. This method was used in the Golino et al.'s (2020)
Psychological Methods simulation
"LE"
--- Applies the Leading Eigenvector algorithm
(cluster_leading_eigen
)
on the empirical correlation matrix. If the number of dimensions is 1,
then the Leading Eigenvector solution is used; otherwise, regular EGA
is used. This method was used in the Christensen et al.'s (2023)
Behavior Research Methods simulation
"louvain"
--- Applies the Louvain algorithm (cluster_louvain
)
on the empirical correlation matrix. If the number of dimensions is 1,
then the Louvain solution is used; otherwise, regular EGA is used.
This method was validated Christensen's (2022) PsyArXiv simulation.
Consensus clustering can be used by specifying either
"consensus.method"
or "consensus.iter"
Boolean (length = 1).
Defaults to TRUE
.
Whether the plot should be returned with the results.
Set to FALSE
for no plot
Boolean (length = 1).
Whether messages and (insignificant) warnings should be output.
Defaults to FALSE
(silent calls).
Set to TRUE
to see all messages and warnings for every function call
Additional arguments to be passed on to
auto.correlate
,
network.estimation
,
community.detection
,
community.consensus
, and
community.unidimensional
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen at gmail.com>, Maria Dolores Nieto <acinodam at gmail.com> and Luis E. Garrido <garrido.luiseduardo at gmail.com>
Original simulation and implementation of EGA
Golino, H. F., & Epskamp, S. (2017).
Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research.
PLoS ONE, 12, e0174035.
Current implementation of EGA, introduced unidimensional checks, continuous and dichotomous data
Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., & Thiyagarajan, J. A. (2020).
Investigating the performance of Exploratory Graph Analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial.
Psychological Methods, 25, 292-320.
Compared all igraph community detection algorithms, introduced Louvain algorithm, simulation with continuous and polytomous data
Also implements the Leading Eigenvalue unidimensional method
Christensen, A. P., Garrido, L. E., Pena, K. G., & Golino, H. (2023).
Comparing community detection algorithms in psychological data: A Monte Carlo simulation.
Behavior Research Methods.
Comprehensive unidimensionality simulation
Christensen, A. P. (2023).
Unidimensional community detection: A Monte Carlo simulation, grid search, and comparison.
PsyArXiv.
Compared all igraph
community detection algorithms, simulation with continuous and polytomous data
Christensen, A. P., Garrido, L. E., Guerra-Pena, K., & Golino, H. (2023).
Comparing community detection algorithms in psychometric networks: A Monte Carlo simulation.
Behavior Research Methods.
plot.EGAnet
for plot usage in EGAnet
# Obtain data
wmt <- wmt2[,7:24]
# Estimate EGA
ega.wmt <- EGA(
data = wmt,
plot.EGA = FALSE # No plot for CRAN checks
)
# Print results
print(ega.wmt)
# Estimate EGAtmfg
ega.wmt.tmfg <- EGA(
data = wmt, model = "TMFG",
plot.EGA = FALSE # No plot for CRAN checks
)
# Estimate EGA with Louvain algorithm
ega.wmt.louvain <- EGA(
data = wmt, algorithm = "louvain",
plot.EGA = FALSE # No plot for CRAN checks
)
# Estimate EGA with an {igraph} function (Fast-greedy)
ega.wmt.greedy <- EGA(
data = wmt,
algorithm = igraph::cluster_fast_greedy,
plot.EGA = FALSE # No plot for CRAN checks
)
Run the code above in your browser using DataLab