vn.entropy: Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
Description
Computes the fit of a dimensionality structure using Von Neumman's
entropy when the input is a correlation matrix. Lower values suggest better
fit of a structure to the data
Usage
vn.entropy(data, structure)
Value
Returns a list containing:
VN.Entropy.Fit
The Entropy Fit Index using Von Neumman's entropy
Total.Correlation
The total correlation of the dataset
Average.Entropy
The average entropy of the dataset
Arguments
data
Matrix or data frame.
Contains variables to be used in the analysis
structure
Numeric or character vector (length = ncol(data)).
A vector representing the structure (numbers or labels for each item).
Can be theoretical factors or the structure detected by EGA
Author
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
References
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
# Get EGA resultega.wmt <- EGA(
data = wmt2[,7:24], model = "glasso",
plot.EGA = FALSE# no plot for CRAN checks)
# Compute Von Neumman entropyvn.entropy(ega.wmt$correlation, ega.wmt$wc)