# read in the EcoliMutMA sample data from the package
data(EcoliMutMA, package="ELBOW")
csv_data <- EcoliMutMA
# - OR - Read in a CSV file (uncomment - remove the #'s
# - from the line below and replace 'filename' with
# the CSV file's filename)
# csv_data <- read.csv(filename)
# set the number of initial and final condition replicates both to three
init_count <- 3
final_count <- 3
# Parse the probes, intial conditions and final conditions
# out of the CSV file. Please see: extract_working_sets
# for more information.
#
# init_count should be the number of columns associated with
# the initial conditions of the experiment.
# final_count should be the number of columns associated with
# the final conditions of the experiment.
working_sets <- extract_working_sets(csv_data, init_count, final_count)
probes <- working_sets[[1]]
initial_conditions <- working_sets[[2]]
final_conditions <- working_sets[[3]]
# Uncomment to output the plot to a PNG file (optional)
# png(file="output_plot.png")
my_data <- replicates_to_fold(probes, initial_conditions, final_conditions)
# compute the elbow for the dataset
limits <- do_elbow(data.frame(my_data$fold))
plus_minus <- elbow_variance(probes, initial_conditions, final_conditions)
max_upper_variance <- plus_minus$max_upper
min_upper_variance <- plus_minus$min_upper
max_lower_variance <- plus_minus$max_lower
min_lower_variance <- plus_minus$min_lower
# rounded number for nice appearance graph
upper_limit <- round(limits[[1]],digits=2)
# rounded number nice appearance for graph
lower_limit <- round(limits[[2]],digits=2)
p_limits <- null_variance(my_data, upper_limit, lower_limit, initial_conditions)
prowmin <- p_limits[[1]]
prowmax <- p_limits[[2]]
prowmedian <- p_limits[[3]]
Run the code above in your browser using DataLab