# \donttest{
# Define a design first
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# Drop most subjects for speed
dat <- forstmann[forstmann$subjects %in% unique(forstmann$subjects)[1:2],]
dat$subjects <- droplevels(dat$subjects)
design_LNR <- design(data = dat,model=LNR,matchfun=matchfun,
formula=list(m~lM,s~1,t0~1),
contrasts=list(m=list(lM=ADmat)))
# Before fit can be called, we first need to make an emc object
LNR_s <- make_emc(dat, design_LNR, rt_resolution = 0.05, n_chains = 2)
# Run fit, here illustrating how to use stop_criteria (also for speed purposes)
LNR_s <- fit(LNR_s, cores_for_chains = 1, stop_criteria = list(
preburn = list(iter = 10), burn = list(mean_gd = 2.5), adapt = list(min_unique = 20),
sample = list(iter = 25, max_gd = 2)), verbose = FALSE, particle_factor = 30, step_size = 25)
# }
Run the code above in your browser using DataLab