# First create a design
design_DDMaE <- design(data = forstmann,model=DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
# Then create a group-level means vector:
group_means =c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
# Now we can create subject-level parameters
subj_pars <- make_random_effects(design_DDMaE, group_means, n_subj = 19)
# We can also define a covariance matrix to simulate from
subj_pars <- make_random_effects(design_DDMaE, group_means, n_subj = 19,
covariances = diag(.1, length(group_means)))
# The subject level parameters can be used to generate data
make_data(subj_pars, design_DDMaE, n_trials = 10)
Run the code above in your browser using DataLab