Learn R Programming

EMMAgeo (version 0.9.8)

End-Member Modelling of Grain-Size Data

Description

End-member modelling analysis of grain-size data is an approach to unmix a data set's underlying distributions and their contribution to the data set. EMMAgeo provides deterministic and robust protocols for that purpose.

Copy Link

Version

Install

install.packages('EMMAgeo')

Monthly Downloads

323

Version

0.9.8

License

GPL-3

Maintainer

Michael Dietze

Last Published

March 25th, 2025

Functions in EMMAgeo (0.9.8)

test.factors

Calculate the initial cumulative explained variance of factors.
robust.loadings

Extract robust end-member loadings
robust.EM

Extract robust end-members
get.l.opt

Identify optimum weight transformation value
get.l

Generate a vector of weight transformation values from l.min to l.max.
get.limits

Infer lower and upper mode position limits to define robust end-members.
test.l.max

Find maximum possible wight transformation value.
get.q

Generate a parameter matrix with q.min and q.max values for robust EMMA.
test.l

Test a vector of weight transformation limits for mximum value.
EMpot

example data
GUI

Start GUI for EMMA
click.limits

Define mode limits by mouse clicks.
X

example data
EMMAgeo-package

End-member modelling algorithm and supporting functions for unmixing grain-size distributions and further compositional data.
check.data

Check correctness and consistency of input data
create.EM

Create grain-size-distributions.
model.EM

Model all possible end-member scenarios
residual.EM

Calculate a residual end-member loading.
convert.units

Convert between phi and micrometers.
EMrob

example data
EMMA

End-member modelling analysis algorithm.
interpolate.classes

Interpolate data between different classes.
test.parameters

Evaluate influence of model parameters.
mix.EM

Function to mix sample spectres.
robust.scores

Extract robust end-member scores.
test.robustness

Test model robustness.