if (FALSE) {
# first, let's tune some models
occs <- read.csv(file.path(system.file(package="predicts"),
"/ex/bradypus.csv"))[,2:3]
envs <- rast(list.files(path=paste(system.file(package="predicts"),
"/ex", sep=""), pattern="tif$", full.names=TRUE))
bg <- as.data.frame(predicts::backgroundSample(envs, n = 10000))
names(bg) <- names(occs)
ps <- list(orientation = "lat_lat")
e <- ENMevaluate(occs, envs, bg,
tune.args = list(fc = c("L","LQ","LQH"), rm = 1:5),
partitions = "block", partition.settings = ps,
algorithm = "maxnet", categoricals = "biome",
parallel = TRUE)
# now, plot the environmental similarity of each partition to the others
evalplot.envSim.hist(e)
}
Run the code above in your browser using DataLab