if (FALSE) {
library(terra)
library(ENMeval)
occs <- read.csv(file.path(system.file(package="predicts"),
"/ex/bradypus.csv"))[,2:3]
envs <- rast(list.files(path=paste(system.file(package="predicts"),
"/ex", sep=""), pattern="tif$", full.names=TRUE))
bg <- as.data.frame(predicts::backgroundSample(envs, n = 10000))
names(bg) <- names(occs)
parts <- get.block(occs, bg, orientation = "lat_lon")
# now, plot the partition groups for occurrence and background points
evalplot.grps(envs = envs, pts = occs, pts.grp = parts$occs.grp)
evalplot.grps(envs = envs, pts = bg, pts.grp = parts$bg.grp)
# you can also plot with an ENMevaluation object
ps <- list(orientation = "lat_lon")
e <- ENMevaluate(occs, envs, bg,
tune.args = list(fc = c("L","LQ"), rm = 1:3),
partitions = "block", partition.settings = ps,
algorithm = "maxnet", categoricals = "biome",
parallel = TRUE)
evalplot.grps(e = e, envs = envs, ref.data = "occs")
evalplot.grps(e = e, envs = envs, ref.data = "bg")
}
Run the code above in your browser using DataLab