
PlotPathwayGraph(graph, margin = 0, vertex.label.cex = 0.6, vertex.label.font = 1, vertex.size = 8, vertex.size2 = 6, vertex.shape = "rectangle", layout = layout.random, vertex.label.color = "black", edge.color = "dimgray", vertex.color = "#C1FFC1", vertex.frame.color = "dimgray", axes = FALSE, xlab = "", ylab = "", sub = NULL, main = NULL, ...)
plot.igraph
plot.igraph
and see plot
.## Not run:
#
# #get example data
# dataset<-GetExampleData("dataset")
# class.labels<-GetExampleData("class.labels")
# controlcharactor<-GetExampleData("controlcharactor")
#
# #get the data for background set of edges
# edgesbackgrand<-GetEdgesBackgrandData()
#
# #get the edge sets of pathways
# pathwayEdge.db<-GetPathwayEdgeData()
#
# #calculate the differential correlation score for edges
# EdgeCorScore<-calEdgeCorScore(dataset, class.labels, controlcharactor,edgesbackgrand)
#
# #identify dysregulated pathways by using the function ESEA.Main
# #Results<-ESEA.Main(EdgeCorScore,pathwayEdge.db)
# Results<-GetExampleData("PathwayResult")
#
# #obtain the detail results of genes for a significant pathway
# PathwayNetwork<-Results[[2]][[1]]
#
# #Plot the pathway-result network diagram, the edges which contribute to the ES are labeled with red.
# PlotPathwayGraph(PathwayNetwork,layout=layout.random)
#
# ## End(Not run)
Run the code above in your browser using DataLab