Function returns an object of class "eztune
" which contains
a summary of the tuning parameters for the best model, the best loss
measure achieved (classification accuracy, AUC, MSE, or MAE), and the best
model.
lossBest loss measure obtained by the optimizer. This is
the measure specified by the user that the optimizer uses to choose a
"best" model (classification accuracy, AUC, MSE, or MAE). Note that
if the default option is used it is the classification
accuracy for a binary response and the MSE for a continuous response.
modelBest model found by the optimizer. Adaboost model
comes from package ada
(ada
object), elastic net model
comes from package glmnet
(glmnet
object), gbm model
comes from package gbm
(gbm.object
object), svm (svm
object) model comes from package e1071
.
nNumber of observations used in model training when
fast option is used
nfoldNumber of folds used if cross validation is used
for optimization.
iterTuning parameter for adaboost.
nuTuning parameter for adaboost.
shrinkageTuning parameter for adaboost and gbm.
lambdaTuning parameter for elastic net
alphaTuning parameter for elastic net
n.treesTuning parameter for gbm.
interaction.depthTuning parameter for gbm.
n.minobsinnodeTuning parameter for gbm.
costTuning parameter for svm.
gammaTuning parameter for svm.
epsilonTuning parameter for svm regression.
levelsIf the model has a binary response, the levels of y are listed.