Learn R Programming

Ecfun (version 0.2-0)

truncdist: Truncated distribution

Description

The cumulative distribution function for a truncated distribution is 0 for x <= truncmin, 1 for truncmax < x, and in between is as follows:

(pdist(x, ...) - pdist(truncmin, ...)) / (pdist(truncmax, ...) - pdist(truncmin, ...))

The density, quantile, and random number generation functions are similarly defined from this.

Usage

dtruncdist(x, ..., dist='norm', truncmin=-Inf, truncmax=Inf) 
ptruncdist(q, ..., dist='norm', truncmin=-Inf, truncmax=Inf) 
qtruncdist(p, ..., dist='norm', truncmin=-Inf, truncmax=Inf) 
rtruncdist(n, ..., dist='norm', truncmin=-Inf, truncmax=Inf)

Arguments

x, q

numeric vector of quantiles

p

numeric vector of probabilities

n

number of observations. If length(n) > 1, the length is taken to be the number required.

other arguments to be passed to the corresponding function for the indicated dist

dist

Standard R name for the family of functions for the desired distribution. By default, this is "norm", so the corresponding function for dtruncdist is dnorm, the corresponding function for ptrunctist is pnorm, etc.

truncmin, truncmax

lower and upper truncation points, respectively.

Value

dtruncdist gives the density, ptruncdist gives the distribution function, qtruncdist gives the quantile function, and rtruncdist generates random deviates.

The length of the result is determined by n for rtruncdist and is the maximum of the lengths of the numerical arguments for the other functions.

Details

NOTE: Truncation is different from "censoring", where it's known that an observation lies between certain limits; it's just not known exactly where it lies between those limits.

By contrast, with a truncated distrubion, events below truncmin and above truncmax may exist but are not observed. Thus, it's not known how many events occur outside the given range, truncmin to truncmax, if any. Given data believed to come from a truncated distribution, estimating the parameters provide a means of estimating the number of unobserved events, assuming a particular form for their distribution.

1. Setup

dots <- list(...)

2. For dtruncdist, return 0 for all x outside truncmin and truncmax. For all others, compute as follows:

dots$x <- truncmin ddist <- paste0('d', dist) pdist <- paste0('p', dist) p.min <- do.call(pdist, dots) dots$x <- truncmax p.max <- do.call(pdist, dots) dots$x <- x dx <- do.call(ddist, dots)

return(dx / (p.max-p.min))

NOTE: Adjustments must be made if 'log' appears in names(dots)

3. The computations for ptruncdist are similar.

4. The computations for qtruncdist are complementary.

5. For rtruncdist, use qtruncdist(runif(n), ...).

See Also

Distributions Normal

Examples

Run this code
# NOT RUN {
##
## 1.  dtruncdist
##
#  1.1.  Normal 
dx <- dtruncdist(1:4)

# check 
# }
# NOT RUN {
all.equal(dx, dnorm(1:4))
# }
# NOT RUN {
#  1.2.  Truncated normal between 0 and 1
dx01 <- dtruncdist(seq(-1, 2, .5), truncmin=0, truncmax=1)

# check 
dx01. <- c(0, 0, 0, dnorm(c(.5, 1))/(pnorm(1)-pnorm(0)), 
           0, 0)
# }
# NOT RUN {
all.equal(dx01, dx01.)
# }
# NOT RUN {
#  1.3.  lognormal meanlog=log(100), sdlog = 2, truncmin=500 
x10 <- 10^(0:9)
dx10 <- dtruncdist(x10, log(100), 2, dist='lnorm', 
                   truncmin=500)
                  
# check 
dx10. <- (dtruncdist(log(x10), log(100), 2,  
                    truncmin=log(500)) / x10) 
# }
# NOT RUN {
all.equal(dx10, dx10.)
# }
# NOT RUN {
#  1.4.  log density of the previous example 
dx10log <- dtruncdist(x10, log(100), 2, log=TRUE, 
                  dist='lnorm', truncmin=500)
# }
# NOT RUN {
all.equal(dx10log, log(dx10))
# }
# NOT RUN {
#  1.5.  Poisson without 0.  

dPois0.9 <-dtruncdist(0:9, lambda=1, dist='pois', truncmin=0) 

# check 
dP0.9 <- c(0, dpois(1:9, lambda=1)/ppois(0, lambda=1, lower.tail=FALSE))
# }
# NOT RUN {
all.equal(dPois0.9, dP0.9)
# }
# NOT RUN {
##
## 2.  ptruncdist
##
#  2.1.  Normal 
px <- ptruncdist(1:4)

# check 
# }
# NOT RUN {
all.equal(px, pnorm(1:4))
# }
# NOT RUN {
#  2.2.  Truncated normal between 0 and 1 
px01 <- ptruncdist(seq(-1, 2, .5), truncmin=0, truncmax=1)

# check 
px01. <- c(0, 0, (pnorm(c(0, .5, 1)) - pnorm(0))
                     /(pnorm(1)-pnorm(0)), 1, 1)
# }
# NOT RUN {
all.equal(px01, px01.)
# }
# NOT RUN {
#  2.3.  lognormal meanlog=log(100), sdlog = 2, truncmin=500 
x10 <- 10^(0:9)
px10 <- ptruncdist(x10, log(100), 2, dist='lnorm', 
                  truncmin=500)
                  
# check 
px10. <- (ptruncdist(log(x10), log(100), 2,  
                     truncmin=log(500))) 
# }
# NOT RUN {
all.equal(px10, px10.)
# }
# NOT RUN {
#  2.4.  log of the previous probabilities 
px10log <- ptruncdist(x10, log(100), 2, log=TRUE, 
                  dist='lnorm', truncmin=500)
# }
# NOT RUN {
all.equal(px10log, log(px10))
# }
# NOT RUN {
##
## 3.  qtruncdist
##
#  3.1.  Normal 
qx <- qtruncdist(seq(0, 1, .2))

# check 
# }
# NOT RUN {
all.equal(qx, qnorm(seq(0, 1, .2)))
# }
# NOT RUN {
#  3.2.  Normal truncated outside (0, 1)
qx01 <- qtruncdist(seq(0, 1, .2), truncmin=0, truncmax=1)

# check 
pxmin <- pnorm(0)
pxmax <- pnorm(1)
unp <- (pxmin + seq(0, 1, .2)*(pxmax-pxmin))
qx01. <- qnorm(unp)
# }
# NOT RUN {
all.equal(qx01, qx01.)
# }
# NOT RUN {
#  3.3.  lognormal meanlog=log(100), sdlog=2, truncmin=500
qlx10 <- qtruncdist(seq(0, 1, .2), log(100), 2, 
                   dist='lnorm', truncmin=500)
                  
# check 
plxmin <- plnorm(500, log(100), 2)
unp. <- (plxmin + seq(0, 1, .2)*(1-plxmin))

qlx10. <- qlnorm(unp., log(100), 2)
# }
# NOT RUN {
all.equal(qlx10, qlx10.)
# }
# NOT RUN {
#  3.4.  previous example with log probabilities 
qlx10l <- qtruncdist(log(seq(0, 1, .2)), log(100), 2, 
                   log.p=TRUE, dist='lnorm', truncmin=500)

# check 
# }
# NOT RUN {
all.equal(qlx10, qlx10l)
# }
# NOT RUN {
## 
## 4.  rtruncdist 
##
#  4.1.  Normal 
set.seed(1)
rx <- rtruncdist(9)

# check 
set.seed(1)
# }
# NOT RUN {
all.equal(rx[1], rnorm(1))
# }
# NOT RUN {
# Only the first observation matches;  check that.  

#  4.2.  Normal truncated outside (0, 1)
set.seed(1)
rx01 <- rtruncdist(9, truncmin=0, truncmax=1)

# check 
pxmin <- pnorm(0)
pxmax <- pnorm(1)
set.seed(1)
rnp <- (pxmin + runif(9)*(pxmax-pxmin))
rx01. <- qnorm(rnp)
# }
# NOT RUN {
all.equal(rx01, rx01.)
# }
# NOT RUN {
#  4.3.  lognormal meanlog=log(100), sdlog=2, truncmin=500
set.seed(1)
rlx10 <- rtruncdist(9, log(100), 2, 
                   dist='lnorm', truncmin=500)
                  
# check 
plxmin <- plnorm(500, log(100), 2)
set.seed(1)
rnp. <- (plxmin + runif(9)*(1-plxmin))

rlx10. <- qlnorm(rnp., log(100), 2)
# }
# NOT RUN {
all.equal(rlx10, rlx10.)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab