Learn R Programming

EcoVirtual (version 1.1)

compLV: Lotka-Volterra Competition Model

Description

Simulate the Lotka-Volterra competition model for two populations.

Usage

compLV(n01, n02, tmax, r1, r2, k1, k2, alfa, beta)

Arguments

n01

initial population for the superior competitor species.

n02

initial population for the inferior competitor species.

tmax

maximum simulation time.

r1

intrinsic growth rate for the superior competitor species.

r2

intrinsic growth rate for the inferior competitor species.

k1

carrying capacity for the superior competitor species.

k2

carrying capacity for the inferior competitor species.

alfa

alfa coefficient.

beta

beta coefficient

Value

'compLV' returns a graph of the population size in time, and a graph with the isoclines of the equilibrium for both species. 'compLV' also returns an invisible matrix with the population size of each species in time.

Details

The Lotka-Volterra competition model follows the equations:

  • SP1: $$\frac{dN_1}{dt}=r_1N_1\left(\frac{K_1-N_1-\alpha N_2}{K_1}\right)$$

  • SP2: $$\frac{dN_2}{dt}=r_2N_2\left(\frac{K_2-N_2-\beta N_1}{K_2}\right)$$

References

Gotelli, N.J. 2008. A primer of Ecology. 4th ed. Sinauer Associates, 291pp. Hastings, A. 1980. Disturbance, coexistence, history and competition for space. Theoretical Population Biology, 18:363-373. Stevens, M.H.H. 2009. A primer in ecology with R. New York, Springer.

See Also

http://ecovirtual.ib.usp.br

Examples

Run this code
# NOT RUN {
# }
# NOT RUN {
	compLV(n01=10, n02=10,r1=0.05, r2=0.03, k1=80, k2=50, alfa=1.2, beta=0.5, tmax=200)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab