read.eset( exprs.file, pdat.file, fdat.file, data.type = c(NA, "ma", "rseq"), NA.method = c("mean", "rm", "keep") )
Defaults to 'mean'.
ExpressionSet
.
In case of microarry data the feature IDs typically correspond to probe IDs. Thus, the fdat.file should define a mapping from probe ID (1st column) to corresponding KEGG gene ID (2nd column). The mapping can be defined automatically by providing the ID of a recognized platform such as 'hgu95av2' (Affymetrix Human Genome U95 chip). This requires that a corresponding '.db' package exists (see http://www.bioconductor.org/packages/release/BiocViews.html#___ChipName for all available chips/packages) and that you have it installed. *However, this option should be used with care*. Existing mappings might be outdated and sometimes the KEGG gene ID does not correspond to the Entrez ID (e.g. for E. coli and S. cerevisae). In these cases probe identifiers are mapped twice (probe ID -> Entrez ID -> KEGG ID), which almost always results in loss of information. Thus, mapping quality should always be checked and in case properly defined with a 2-column fdat.file.
ExpressionSet-class
# reading the expression data from file
exprs.file <- system.file("extdata/exprs.tab", package="EnrichmentBrowser")
pdat.file <- system.file("extdata/pData.tab", package="EnrichmentBrowser")
fdat.file <- system.file("extdata/fData.tab", package="EnrichmentBrowser")
eset <- read.eset(exprs.file, pdat.file, fdat.file)
Run the code above in your browser using DataLab