Learn R Programming

EnvStats (version 2.1.0)

cdfPlot: Plot Cumulative Distribution Function

Description

Produce a cumulative distribution function (cdf) plot for a user-specified distribution.

Usage

cdfPlot(distribution = "norm", param.list = list(mean = 0, sd = 1), 
    left.tail.cutoff = ifelse(is.finite(supp.min), 0, 0.001), 
    right.tail.cutoff = ifelse(is.finite(supp.max), 0, 0.001), plot.it = TRUE, 
    add = FALSE, n.points = 1000, cdf.col = "black", cdf.lwd = 3 * par("cex"), 
    cdf.lty = 1, curve.fill = FALSE, curve.fill.col = "cyan", 
    digits = .Options$digits, ..., type = ifelse(discrete, "s", "l"), 
    main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

distribution
a character string denoting the distribution abbreviation. The default value is distribution="norm". See the help file for Distribution.df for a list of possible distribution
param.list
a list with values for the parameters of the distribution. The default value is param.list=list(mean=0, sd=1). See the help file for Distribution.df for the names and possible
left.tail.cutoff
a numeric scalar indicating what proportion of the left-tail of the probability distribution to omit from the plot. For densities with a finite support minimum (e.g., Lognormal) the default value is 0
right.tail.cutoff
a scalar indicating what proportion of the right-tail of the probability distribution to omit from the plot. For densities with a finite support maximum (e.g., Binomial) the default value is 0; fo
plot.it
a logical scalar indicating whether to create a plot or add to the existing plot (see add) on the current graphics device. If plot.it=FALSE, no plot is produced, but a list of $(x, y)$ values is returned (see the section
add
a logical scalar indicating whether to add the cumulative distribution function curve to the existing plot (add=TRUE), or to create a new plot (add=FALSE; the default). This argument is ignored if plot.it=FALSE
n.points
a numeric scalar specifying at how many evenly-spaced points the cumulative distribution function will be evaluated. The default value is n.points=1000.
cdf.col
a numeric scalar or character string determining the color of the cdf line in the plot. The default value is pdf.col="black". See the entry for col in the help file for par
cdf.lwd
a numeric scalar determining the width of the cdf line in the plot. The default value is pdf.lwd=3*par("cex"). See the entry for lwd in the help file for par for more
cdf.lty
a numeric scalar determining the line type of the cdf line in the plot. The default value is pdf.lty=1. See the entry for lty in the help file for par for more informatio
curve.fill
a logical value indicating whether to fill in the area below the cumulative distribution function curve with the color specified by curve.fill.col. The default value is curve.fill=FALSE.
curve.fill.col
when curve.fill=TRUE, a numeric scalar or character string indicating what color to use to fill in the area below the cumulative distribution function curve. The default value is curve.fill.col="cyan". See the entry
digits
a scalar indicating how many significant digits to print for the distribution parameters. The default value is digits=.Options$digits.
type, main, xlab, ylab, xlim, ylim, ...
additional graphical parameters (see lines and par). In particular, the argument type specifies the kind of line type. By default, the funct

Value

  • cdfPlot invisibly returns a list giving coordinates of the points that have been or would have been plotted:
  • QuantilesThe quantiles used for the plot.
  • Cumulative.ProbabilitiesThe values of the cdf associated with the quantiles.

Details

The cumulative distribution function (cdf) of a random variable $X$, usually denoted $F$, is defined as: $$F(x) = Pr(X \le x) \;\;\;\;\;\; (1)$$ That is, $F(x)$ is the probability that $X$ is less than or equal to $x$. This is the probability that the random variable $X$ takes on a value in the interval $(-\infty, x]$ and is simply the (Lebesgue) integral of the pdf evaluated between $-\infty$ and $x$. That is, $$F(x) = Pr(X \le x) = \int_{-\infty}^x f(t) dt \;\;\;\;\;\; (2)$$ where $f(t)$ denotes the probability density function of $X$ evaluated at $t$. For discrete distributions, Equation (2) translates to summing up the probabilities of all values in this interval: $$F(x) = Pr(X \le x) = \sum_{t \in (-\infty,x]} f(t) = \sum_{t \in (-\infty,x]} Pr(X = t) \;\;\;\;\;\; (3)$$ A cumulative distribution function (cdf) plot plots the values of the cdf against quantiles of the specified distribution. Theoretical cdf plots are sometimes plotted along with empirical cdf plots to visually assess whether data have a particular distribution.

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth Edition. John Wiley and Sons, Hoboken, NJ. Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions, Second Edition. John Wiley and Sons, New York. Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume 1. Second Edition. John Wiley and Sons, New York. Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume 2. Second Edition. John Wiley and Sons, New York.

See Also

Distribution.df, ecdfPlot, cdfCompare, pdfPlot.

Examples

Run this code
# Plot the cdf of the standard normal distribution 
  #-------------------------------------------------
  dev.new()
  cdfPlot()

  #==========

  # Plot the cdf of the standard normal distribution
  # and a N(2, 2) distribution on the sample plot. 
  #-------------------------------------------------
  dev.new()
  cdfPlot(param.list = list(mean=2, sd=2), main = "") 

  cdfPlot(add = TRUE, cdf.col = "red") 

  legend("topleft", legend = c("N(2,2)", "N(0,1)"), 
    col = c("black", "red"), lwd = 3 * par("cex")) 

  title("CDF Plots for Two Normal Distributions")
 
  #==========

  # Clean up
  #---------
  graphics.off()

Run the code above in your browser using DataLab