Learn R Programming

EnvStats (version 2.1.0)

eqnpar: Estimate Quantiles of a Distribution Nonparametrically

Description

Estimate quantiles of a distribution, and optionally create confidence intervals for them, without making any assumptions about the form of the distribution.

Usage

eqnpar(x, p = 0.5, ci = FALSE, lcl.rank = NULL, ucl.rank = NULL, 
    lb = -Inf, ub = Inf, ci.type = "two-sided", 
    ci.method = "exact", approx.conf.level = 0.95, digits = 0)

Arguments

x
a numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
p
numeric vector of probabilities for which quantiles will be estimated. All values of p must be between 0 and 1. When ci=TRUE, p must be a scalar. The default value is p=0.5.
ci
logical scalar indicating whether to compute a confidence interval for the quantile. The default value is ci=FALSE.
lcl.rank, ucl.rank
positive integers indicating the ranks of the order statistics that are used for the lower and upper bounds of the confidence interval for the specified quantile. Both arguments must be integers between 1 and the number of non-missing values
lb, ub
scalars indicating lower and upper bounds on the distribution. By default, lb=-Inf and ub=Inf. If you are constructing a confidence interval for a quantile from a distribution that you know has a lower bound other than
ci.type
character string indicating what kind of confidence interval to compute. The possible values are "two-sided" (the default), "lower", and "upper". This argument is ignored if ci=FALSE, or
ci.method
character string indicating the method to use to construct the confidence interval. The possible values are "exact" (the default) and "normal.approx". See the DETAILS section for more information on these methods. This
approx.conf.level
a scalar between 0 and 1 indicating the desired confidence level of the confidence interval. The default value is 0.95. The true confidence level usually will not be exactly equal to approx.conf.level (see DETAILS). Th
digits
an integer indicating the number of decimal places to round to when printing out the value of 100*p. The default value is digits=0.

Value

  • a list of class "estimate" containing the estimated quantile(s) and other information. See estimate.object for details.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed prior to performing the estimation. Estimation The function eqnpar calls the Rfunction quantile to estimate quantiles. Confidence Intervals Let $x_1, x_2, \ldots, x_n$ denote a sample of $n$ independent and identically distributed random variables from some arbitrary distribution. Furthermore, let $x_{(i)}$ denote the $i$'th order statistic for these $n$ random variables. That is, $$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)} \;\;\;\;\;\; (1)$$ Finally, let $x_p$ denote the $p$'th quantile of the distribution, that is: $$Pr(X < x_p) \le p \;\;\;\;\;\; (2)$$ $$Pr(X \le x_p) \ge p \;\;\;\;\;\; (3)$$ It can be shown (e.g., Conover, 1980, pp. 114-116) that for the $i$'th order statistic: $$Pr[x_p < x_{(i)}] = F_{B(n,p)}[i-1]; \; i = 1, 2, \ldots, n \;\;\;\;\;\; (4)$$ where $F_{B(n,p)}[y]$ denotes the cumulative distribution function of a binomial random variable with parameters size=$n$ and prob=$p$ evaluated at $y$. This fact is used to construct exact confidence intervals for quantiles (see below). Two-Sided Confidence Interval (ci.type="two-sided") A two-sided nonparametric confidence interval for the $p$'th quantile is constructed as: $$[x_{(r)}, x_{(s)}] \;\;\;\;\;\; (5)$$ where $$1 \le r \le (n-1) \;\;\;\;\;\; (6)$$ $$2 \le s \le n \;\;\;\;\;\; (7)$$ $$r < s \;\;\;\;\;\; (8)$$ Note that the argument lcl.rank corresponds to $r$, and the argument ucl.rank corresponds to $s$. This confidence interval has an associated confidence level that is at least as large as: $$F_{B(n,p)}[s-1] - F_{B(n,p)}[r-1] \;\;\;\;\;\; (9)$$ for a discrete distribution and exactly equal to this value for a continuous distribution. This is because: $$Pr[x_{(r)} \le x_p \le x_{(s)}]$$ $$= Pr[x_p \le x_{(s)}] - Pr[x_p < x_{(r)}]$$ $$= Pr[x_p < x_{(s)}] + Pr[x_p = x_{(s)}] - Pr[x_p < x_{(r)}]$$ $$\ge Pr[x_p < x_{(s)}] - Pr[x_p < x_{(r)}]$$ $$= F_{B(n,p)}[s-1] - F_{B(n,p)}[r-1] \;\;\;\;\;\; (10)$$ Exact Method (ci.method="exact") When lcl.rank ($r$) and ucl.rank ($s$) are not supplied by the user, and ci.method="exact", $r$ and $s$ are chosen such that $r$ is the smallest integer satisfying equation (11) below, and $s$ is initially set to the largest integer satisfying equation (12) below: $$F_{B(n,p)}[r-1] \ge \frac{\alpha}{2} \;\;\;\;\;\; (11)$$ $$F_{B(n,p)}[s-1] \le \frac{1-\alpha}{2} \;\;\;\;\;\; (12)$$ where $\alpha = 1 -$approx.conf.level. Let $r^*$ and $s^*$ denote the values of $r$ and $s$ chosen in this manner. If $$F_{B(n,p)}[s^*] - F_{B(n,p)}[r^*-1] \le 1 - \alpha \;\;\;\;\;\; (13)$$ then $s$ is set to $s^* + 1$. Approximate Method (ci.method="approx") When lcl.rank ($r$) and ucl.rank ($s$) are not supplied by the user and ci.method="normal.approx", $r$ and $s$ are chosen such that $$r = np - h \;\;\;\;\;\; (14)$$ $$s = np + h \;\;\;\;\;\; (15)$$ $$h = t_{n-1, 1-\alpha/2} \sqrt{np(1-p)} \;\;\;\;\;\; (16)$$ where $t_{\nu,q}$ denotes the $q$'th quantile of Student's t-distribution with $\nu$ degrees of freedom, and then $r$ and $s$ are rounded to the nearest integer. One-Sided Lower Confidence Interval (ci.type="lower") A one-sided lower nonparametric confidence interval for the $p$'th quantile is constructed as: $$[x_{(r)}, ub] \;\;\;\;\;\; (17)$$ where $ub$ denotes the value of the ub argument (the user-supplied upper bound). Exact Method (ci.method="exact") When lcl.rank ($r$) is not supplied by the user, and ci.method="exact", $r$ is chosen such that it is the smallest integer satisfying the following equation: $$F_{B(n,p)}[r-1] \ge \alpha \;\;\;\;\;\; (18)$$ where $\alpha = 1 -$approx.conf.level. Approximate Method (ci.method="approx") When lcl.rank ($r$) is not supplied by the user and ci.method="normal.approx", $r$ is chosen such that $$r = np - t_{n-1, 1-\alpha} \sqrt{np(1-p)} \;\;\;\;\;\; (19)$$ and then $r$ is rounded to the nearest integer. One-Sided Upper Confidence Interval (ci.type="upper") A one-sided upper nonparametric confidence interval for the $p$'th quantile is constructed as: $$[lb, x_{(s)}] \;\;\;\;\;\; (20)$$ where $lb$ denotes the value of the lb argument (the user-supplied lower bound). Exact Method (ci.method="exact") When ucl.rank ($s$) is not supplied by the user, and ci.method="exact", $s$ is chosen such that it is the largest integer satisfying the following equation: $$F_{B(n,p)}[s-1] \le 1-\alpha \;\;\;\;\;\; (21)$$ where $\alpha = 1 -$approx.conf.level. Approximate Method (ci.method="approx") When ucl.rank ($s$) is not supplied by the user and ci.method="normal.approx", $s$ is chosen such that $$s = np + t_{n-1, 1-\alpha} \sqrt{np(1-p)} \;\;\;\;\;\; (22)$$ and then $s$ is rounded to the nearest integer. Note on Value of Confidence Level Because of the discrete nature of order statistics, no matter what the underlying distribution, the value of the confidence level associated with the nonparametric confidence interval for the $p$'th quantile will usually not be precisely equal to approx.conf.level.

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Lewis Publishers, Boca Raton. Conover, W.J. (1980). Practical Nonparametric Statistics. Second Edition. John Wiley and Sons, New York. Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York, NY, pp.132-136. Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier, New York, NY, pp.88-90. USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery Program Implementation and Information Division. U.S. Environmental Protection Agency, Washington, D.C. Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

quantile, tolIntNpar, Estimating Distribution Quantiles, Tolerance Intervals, estimate.object.

Examples

Run this code
# Generate 20 observations from a cauchy distribution with parameters 
  # location=0, scale=1.  The true 75th percentile of this distribution is 1. 
  # Use eqnpar to estimate the 75th percentile and construct a 90\% confidence interval. 
  # (Note: the call to set.seed simply allows you to reproduce this example.)

  set.seed(250) 
  dat <- rcauchy(20, location = 0, scale = 1) 
  eqnpar(dat, p = 0.75, ci = TRUE, approx.conf.level = 0.9) 

  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            None
  #
  #Estimated Quantile(s):           75'th %ile = 1.524903
  #
  #Quantile Estimation Method:      Nonparametric
  #
  #Data:                            dat
  #
  #Sample Size:                     20
  #
  #Confidence Interval for:         75'th %ile
  #
  #Confidence Interval Method:      exact
  #
  #Confidence Interval Type:        two-sided
  #
  #Confidence Level:                87.38755%
  #
  #Confidence Limit Rank(s):        13 19 
  #
  #Confidence Interval:             LCL = 1.018038
  #                                 UCL = 2.215660

  #----------

  # In the above example, the true confidence level is 87\% instead of 90\%.  
  # Let's try to construct a confidence interval with a confidence level that is 
  # at least 90\% by supplying our own indices for the order statistics to use for 
  # the confidence limits.  In the above example, the 13'th and 19'th order statistics 
  # are used to construct the confidence interval.  Let's try the 12'th and 19'th:

  eqnpar(dat, p = 0.75, ci = TRUE, lcl.rank = 12, ucl.rank = 19) 

  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            None
  #
  #Estimated Quantile(s):           75'th %ile = 1.524903
  #
  #Quantile Estimation Method:      Nonparametric
  #
  #Data:                            dat
  #
  #Sample Size:                     20
  #
  #Confidence Interval for:         75'th %ile
  #
  #Confidence Interval Method:      exact
  #
  #Confidence Interval Type:        two-sided
  #
  #Confidence Level:                93.47622%
  #
  #Confidence Limit Rank(s):        12 19 
  #
  #Confidence Interval:             LCL = 0.7494692
  #                                 UCL = 2.215660

  #----------
  # Clean up
  rm(dat)

  #==========

  # Modify Example 17-4 on page 17-21 of USEPA (2009).  This example uses 
  # copper concentrations (ppb) from 3 background wells to set an upper 
  # limit for 2 compliance wells.  Here we will compute an upper 95\% confidence interval for 
  # the 95'th percentile of the distribution of copper concentrations in the background wells.  
  # The data are stored in EPA.92c.copper2.df.  Note that even though these data are 
  # Type I left singly censored, it is still possible to compute an estimate of the 
  # 95'th percentile. 

  EPA.92c.copper2.df
  #   Copper.orig Copper Censored Month Well  Well.type
  #1           <5    5.0     TRUE     1    1 Background
  #2           <5    5.0     TRUE     2    1 Background
  #3          7.5    7.5    FALSE     3    1 Background
  #...
  #9          9.2    9.2    FALSE     1    2 Background
  #10          <5    5.0     TRUE     2    2 Background
  #11          <5    5.0     TRUE     3    2 Background
  #...
  #17          <5    5.0     TRUE     1    3 Background
  #18         5.4    5.4    FALSE     2    3 Background
  #19         6.7    6.7    FALSE     3    3 Background
  #...
  #29         6.2    6.2    FALSE     5    4 Compliance
  #30          <5    5.0     TRUE     6    4 Compliance
  #31         7.8    7.8    FALSE     7    4 Compliance
  #...
  #38          <5    5.0     TRUE     6    5 Compliance
  #39         5.6    5.6    FALSE     7    5 Compliance
  #40          <5    5.0     TRUE     8    5 Compliance

  with(EPA.92c.copper2.df, 
    eqnpar(Copper[Well.type=="Background"], p = 0.95, ci = TRUE, lb = 0, 
      ci.type = "upper", approx.conf.level = 0.95)) 

  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            None
  #
  #Estimated Quantile(s):           95'th %ile = 7.925
  #
  #Quantile Estimation Method:      Nonparametric
  #
  #Data:                            Copper[Well.type == "Background"]
  #
  #Sample Size:                     24
  #
  #Confidence Interval for:         95'th %ile
  #
  #Confidence Interval Method:      exact
  #
  #Confidence Interval Type:        upper
  #
  #Confidence Level:                70.8011%
  #
  #Confidence Limit Rank(s):        24 
  #
  #Confidence Interval:             LCL = 0.0
  #                                 UCL = 9.2

  #----------

  # For the above example, the true confidence level is 71\% instead of 95\%.  
  # This is a function of the small sample size.  In fact, as Example 17-4 shows, the 
  # largest quantile for which you can construct a nonparametric confidence interval that 
  # will have associated confidence level of 95\% is the 88'th percentile:


  with(EPA.92c.copper2.df, 
    eqnpar(Copper[Well.type=="Background"], p = 0.88, ci = TRUE, 
      ucl.rank = 24, lb = 0, ci.type = "upper", approx.conf.level = 0.95)) 

  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            None
  #
  #Estimated Quantile(s):           88'th %ile = 6.892
  #
  #Quantile Estimation Method:      Nonparametric
  #
  #Data:                            Copper[Well.type == "Background"]
  #
  #Sample Size:                     24
  #
  #Confidence Interval for:         88'th %ile
  #
  #Confidence Interval Method:      exact
  #
  #Confidence Interval Type:        upper
  #
  #Confidence Level:                95.3486%
  #
  #Confidence Limit Rank(s):        24 
  #
  #Confidence Interval:             LCL = 0.0
  #                                 UCL = 9.2

  #==========

  # Reproduce Example 21-6 on pages 21-21 to 21-22 of USEPA (2009).  
  # Use 12 measurements of nitrate (mg/L) at a well used for drinking water 
  # to determine with 95% confidence whether or not the infant-based, acute 
  # risk standard of 10 mg/L has been violated.  Assume that the risk 
  # standard represents an upper 95'th percentile limit on nitrate 
  # concentrations.  So what we need to do is construct a one-sided 
  # lower nonparametric confidence interval for the 95'th percentile 
  # that has associated confidence level of no more than 95%, and we will 
  # compare the lower confidence limit with the MCL of 10 mg/L.  
  #
  # The data for this example are stored in EPA.09.Ex.21.6.nitrate.df.

  # Look at the data:
  #------------------

  EPA.09.Ex.21.6.nitrate.df
  #   Sampling.Date       Date Nitrate.mg.per.l.orig Nitrate.mg.per.l Censored
  #1      7/28/1999 1999-07-28                  <5.0              5.0     TRUE
  #2       9/3/1999 1999-09-03                  12.3             12.3    FALSE
  #3     11/24/1999 1999-11-24                  <5.0              5.0     TRUE
  #4       5/3/2000 2000-05-03                  <5.0              5.0     TRUE
  #5      7/14/2000 2000-07-14                   8.1              8.1    FALSE
  #6     10/31/2000 2000-10-31                  <5.0              5.0     TRUE
  #7     12/14/2000 2000-12-14                    11             11.0    FALSE
  #8      3/27/2001 2001-03-27                  35.1             35.1    FALSE
  #9      6/13/2001 2001-06-13                  <5.0              5.0     TRUE
  #10     9/16/2001 2001-09-16                  <5.0              5.0     TRUE
  #11    11/26/2001 2001-11-26                   9.3              9.3    FALSE
  #12      3/2/2002 2002-03-02                  10.3             10.3    FALSE

  # Determine what order statistic to use for the lower confidence limit
  # in order to achieve no more than 95% confidence.
  #---------------------------------------------------------------------

  conf.levels <- ciNparConfLevel(n = 12, p = 0.95, lcl.rank = 1:12, 
    ci.type = "lower")
  names(conf.levels) <- 1:12

  round(conf.levels, 2)
  #   1    2    3    4    5    6    7    8    9   10   11   12 
  #1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.88 0.54 
  
  # Using the 11'th largest observation for the lower confidence limit 
  # yields a confidence level of 88%.  Using the 10'th largest 
  # observation yields a confidence level of 98%.  The example in 
  # USEPA (2009) uses the 10'th largest observation.
  #
  # The 10'th largest observation is 11 mg/L which exceeds the 
  # MCL of 10 mg/L, so there is evidence of contamination.
  #--------------------------------------------------------------------

  with(EPA.09.Ex.21.6.nitrate.df, 
    eqnpar(Nitrate.mg.per.l, p = 0.95, ci = TRUE, 
      ci.type = "lower", lcl.rank = 10))

  #Results of Distribution Parameter Estimation
  #--------------------------------------------
  #
  #Assumed Distribution:            None
  #
  #Estimated Quantile(s):           95'th %ile = 22.56
  #
  #Quantile Estimation Method:      Nonparametric
  #
  #Data:                            Nitrate.mg.per.l
  #
  #Sample Size:                     12
  #
  #Confidence Interval for:         95'th %ile
  #
  #Confidence Interval Method:      exact
  #
  #Confidence Interval Type:        lower
  #
  #Confidence Level:                98.04317%
  #
  #Confidence Limit Rank(s):        10 
  #
  #Confidence Interval:             LCL =  11
  #                                 UCL = Inf

  #==========

  # Clean up
  #---------
  rm(conf.levels)

Run the code above in your browser using DataLab