# Generate 100 observations from a zero-modified lognormal (delta)
# distribution with mean=2, cv=1, and p.zero=0.5, then estimate the
# parameters and also the 80'th and 90'th percentiles.
# (Note: the call to set.seed simply allows you to reproduce this example.)
set.seed(250)
dat <- rzmlnormAlt(100, mean = 2, cv = 1, p.zero = 0.5)
eqzmlnormAlt(dat, p = c(0.8, 0.9))
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Zero-Modified Lognormal (Delta)
#
#Estimated Parameter(s): mean = 1.9604561
# cv = 0.9169411
# p.zero = 0.4500000
# mean.zmlnorm = 1.0782508
# cv.zmlnorm = 1.5307175
#
#Estimation Method: mvue
#
#Estimated Quantile(s): 80'th %ile = 1.897451
# 90'th %ile = 2.937976
#
#Quantile Estimation Method: Quantile(s) Based on
# mvue Estimators
#
#Data: dat
#
#Sample Size: 100
#----------
# Compare the estimated quatiles with the true quantiles
qzmlnormAlt(mean = 2, cv = 1, p.zero = 0.5, p = c(0.8, 0.9))
#[1] 1.746299 2.849858
#----------
# Clean up
rm(dat)
Run the code above in your browser using DataLab