# Create an object of class "gofCensored", then print it out.
#------------------------------------------------------------
gofCensored.obj <- with(EPA.09.Ex.15.1.manganese.df,
gofTestCensored(Manganese.ppb, Censored, test = "sf"))
mode(gofCensored.obj)
#[1] "list"
class(gofCensored.obj)
#[1] "gofCensored"
names(gofCensored.obj)
# [1] "distribution" "dist.abb"
# [3] "distribution.parameters" "n.param.est"
# [5] "estimation.method" "statistic"
# [7] "sample.size" "censoring.side"
# [9] "censoring.levels" "percent.censored"
#[11] "parameters" "z.value"
#[13] "p.value" "alternative"
#[15] "method" "data"
#[17] "data.name" "censored"
#[19] "censoring.name" "bad.obs"
gofCensored.obj
#Results of Goodness-of-Fit Test
#Based on Type I Censored Data
#-------------------------------
#
#Test Method: Shapiro-Francia GOF
# (Multiply Censored Data)
#
#Hypothesized Distribution: Normal
#
#Censoring Side: left
#
#Censoring Level(s): 2 5
#
#Estimated Parameter(s): mean = 15.23508
# sd = 30.62812
#
#Estimation Method: MLE
#
#Data: Manganese.ppb
#
#Censoring Variable: Censored
#
#Sample Size: 25
#
#Percent Censored: 24%
#
#Test Statistic: W = 0.8368016
#
#Test Statistic Parameters: N = 25.00
# DELTA = 0.24
#
#P-value: 0.004662658
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.
#==========
# Extract the p-value
#--------------------
gofCensored.obj$p.value
#[1] 0.004662658
#==========
# Plot the results of the test
#-----------------------------
dev.new()
plot(gofCensored.obj)
#==========
# Clean up
#---------
rm(gofCensored.obj)
graphics.off()
Run the code above in your browser using DataLab