# Create an object of class "gofGroup", then print it out.
# Example 10-4 of USEPA (2009, page 10-20) gives an example of
# simultaneously testing the assumption of normality for nickel
# concentrations (ppb) in groundwater collected at 4 monitoring
# wells over 5 months. The data for this example are stored in
# EPA.09.Ex.10.1.nickel.df.
gofGroup.obj <- gofGroupTest(Nickel.ppb ~ Well,
data = EPA.09.Ex.10.1.nickel.df)
mode(gofGroup.obj)
#[1] "list"
class(gofGroup.obj)
#[1] "gofGroup"
names(gofGroup.obj)
# [1] "distribution" "dist.abb" "statistic"
# [4] "sample.size" "parameters" "p.value"
# [7] "alternative" "method" "data.name"
#[10] "grouping.variable" "parent.of.data" "bad.obs"
#[13] "n.groups" "group.names" "group.scores"
gofGroup.obj
#Results of Group Goodness-of-Fit Test
#-------------------------------------
#
#Test Method: Wilk-Shapiro GOF (Normal Scores)
#
#Hypothesized Distribution: Normal
#
#Data: Nickel.ppb
#
#Grouping Variable: Well
#
#Data Source: EPA.09.Ex.10.1.nickel.df
#
#Number of Groups: 4
#
#Sample Sizes: Well.1 = 5
# Well.2 = 5
# Well.3 = 5
# Well.4 = 5
#
#Test Statistic: z (G) = -3.658696
#
#P-values for
#Individual Tests: Well.1 = 0.03510747
# Well.2 = 0.02385344
# Well.3 = 0.01120775
# Well.4 = 0.10681461
#
#P-value for
#Group Test: 0.0001267509
#
#Alternative Hypothesis: At least one group
# does not come from a
# Normal Distribution.
#==========
# Extract the p-values
#---------------------
gofGroup.obj$p.value
# Well.1 Well.2 Well.3 Well.4 z (G)
#0.0351074733 0.0238534406 0.0112077511 0.1068146088 0.0001267509
#==========
# Plot the results of the test
#-----------------------------
dev.new()
plot(gofGroup.obj)
#==========
# Clean up
#---------
rm(gofGroup.obj)
graphics.off()
Run the code above in your browser using DataLab