# NOT RUN {
# Using the Reference area TcCB data in the data frame EPA.94b.tccb.df,
# estimate the mean and coefficient of variation,
# and construct a 95% confidence interval for the mean.
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], ci = TRUE))
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): mean = 0.5989072
# cv = 0.4899539
#
#Estimation Method: mvue
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Land
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0.5243787
# UCL = 0.7016992
#----------
# Compare the different methods of estimating the distribution parameters using the
# Reference area TcCB data.
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mvue"))$parameters
# mean cv
#0.5989072 0.4899539
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "qmle"))$parameters
# mean cv
#0.6004468 0.4947791
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mle"))$parameters
# mean cv
#0.5990497 0.4888968
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mme"))$parameters
# mean cv
#0.5985106 0.4688423
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"], method = "mmue"))$parameters
# mean cv
#0.5985106 0.4739110
#----------
# Compare the different methods of constructing the confidence interval for
# the mean using the Reference area TcCB data.
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "land"))$interval$limits
# LCL UCL
#0.5243787 0.7016992
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "zou"))$interval$limits
# LCL UCL
#0.5230444 0.6962071
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "parkin"))$interval$limits
# LCL UCL
#0.50 0.74
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "cox"))$interval$limits
# LCL UCL
#0.5196213 0.6938444
with(EPA.94b.tccb.df, elnormAlt(TcCB[Area == "Reference"],
method = "mvue", ci = TRUE, ci.method = "normal.approx"))$interval$limits
# LCL UCL
#0.5130160 0.6847984
#----------
# Reproduce the example in Highlights 7 and 8 of USEPA (1992d). This example shows
# how to compute the upper 95% confidence limit of the mean of a lognormal distribution
# and compares it to the result of computing the upper 95% confidence limit assuming a
# normal distribution. The data for this example are chromium concentrations (mg/kg) in
# soil samples collected randomly over a Superfund site, and are stored in the data frame
# EPA.92d.chromium.vec.
# First look at the data
EPA.92d.chromium.vec
# [1] 10 13 20 36 41 59 67 110 110 136 140 160 200 230 1300
stripChart(EPA.92d.chromium.vec, ylab = "Chromium (mg/kg)")
# Note there is one very large "outlier" (1300).
# Perform a goodness-of-fit test to determine whether a lognormal distribution
# is appropriate:
gof.list <- gofTest(EPA.92d.chromium.vec, dist = 'lnormAlt')
gof.list
#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): mean = 159.855185
# cv = 1.493994
#
#Estimation Method: mvue
#
#Data: EPA.92d.chromium.vec
#
#Sample Size: 15
#
#Test Statistic: W = 0.9607179
#
#Test Statistic Parameter: n = 15
#
#P-value: 0.7048747
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.
plot(gof.list, digits = 2)
# The lognormal distribution seems to provide an adequate fit, although the largest
# observation (1300) is somewhat suspect, and given the small sample size there is
# not much power to detect any kind of mild deviation from a lognormal distribution.
# Now compute the one-sided 95% upper confidence limit for the mean.
# Note that the value of 502 mg/kg shown in Hightlight 7 of USEPA (1992d) is a bit
# larger than the exact value of 496.6 mg/kg shown below.
# This is simply due to rounding error.
elnormAlt(EPA.92d.chromium.vec, ci = TRUE, ci.type = "upper")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): mean = 159.855185
# cv = 1.493994
#
#Estimation Method: mvue
#
#Data: EPA.92d.chromium.vec
#
#Sample Size: 15
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Land
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 0
# UCL = 496.6282
# Now compare this result with the upper 95% confidence limit based on assuming
# a normal distribution. Again note that the value of 325 mg/kg shown in
# Hightlight 8 is slightly larger than the exact value of 320.3 mg/kg shown below.
# This is simply due to rounding error.
enorm(EPA.92d.chromium.vec, ci = TRUE, ci.type = "upper")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Normal
#
#Estimated Parameter(s): mean = 175.4667
# sd = 318.5440
#
#Estimation Method: mvue
#
#Data: EPA.92d.chromium.vec
#
#Sample Size: 15
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: upper
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -Inf
# UCL = 320.3304
#----------
# Clean up
#---------
rm(gof.list)
# }
Run the code above in your browser using DataLab