# NOT RUN {
# Look at how the scaled minimal detectable slope for the t-test for linear
# trend increases with increasing required power:
seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9
scaled.mds <- linearTrendTestScaledMds(n = 10, power = seq(0.5, 0.9, by = 0.1))
round(scaled.mds, 2)
#[1] 0.25 0.28 0.31 0.35 0.41
#----------
# Repeat the last example, but compute the scaled minimal detectable slopes
# based on the approximate power instead of the exact:
scaled.mds <- linearTrendTestScaledMds(n = 10, power = seq(0.5, 0.9, by = 0.1),
approx = TRUE)
round(scaled.mds, 2)
#[1] 0.25 0.28 0.31 0.35 0.41
#==========
# Look at how the scaled minimal detectable slope for the t-test for linear trend
# decreases with increasing sample size:
seq(10, 50, by = 10)
#[1] 10 20 30 40 50
scaled.mds <- linearTrendTestScaledMds(seq(10, 50, by = 10), alternative = "greater")
round(scaled.mds, 2)
#[1] 0.40 0.13 0.07 0.05 0.03
#==========
# Look at how the scaled minimal detectable slope for the t-test for linear trend
# decreases with increasing values of Type I error:
scaled.mds <- linearTrendTestScaledMds(10, alpha = c(0.001, 0.01, 0.05, 0.1),
alternative="greater")
round(scaled.mds, 2)
#[1] 0.76 0.53 0.40 0.34
#----------
# Repeat the last example, but compute the scaled minimal detectable slopes
# based on the approximate power instead of the exact:
scaled.mds <- linearTrendTestScaledMds(10, alpha = c(0.001, 0.01, 0.05, 0.1),
alternative="greater", approx = TRUE)
round(scaled.mds, 2)
#[1] 0.70 0.52 0.41 0.36
#==========
# Clean up
#---------
rm(scaled.mds)
# }
Run the code above in your browser using DataLab