# NOT RUN {
# Look at the relationship between power and sample size for a two-sample t-test,
# assuming a scaled difference of 0.5 and a 5% significance level:
dev.new()
plotTTestDesign(sample.type = "two")
#----------
# For a two-sample t-test, plot sample size vs. the scaled minimal detectable
# difference for various levels of power, using a 5% significance level:
dev.new()
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
ylim = c(0, 110), main="")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
power = 0.9, add = TRUE, plot.col = "red")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
power = 0.8, add = TRUE, plot.col = "blue")
legend("topright", c("95%", "90%", "80%"), lty = 1,
lwd = 3 * par("cex"), col = c("black", "red", "blue"), bty = "n")
title(main = paste("Sample Size vs. Scaled Difference for",
"Two-Sample t-Test, with Alpha=0.05 and Various Powers",
sep="\n"))
#==========
# Modifying the example on pages 21-4 to 21-5 of USEPA (2009), look at
# power versus scaled minimal detectable difference for various sample
# sizes in the context of the problem of using a one-sample t-test to
# compare the mean for the well with the MCL of 7 ppb. Use alpha = 0.01,
# assume an upper one-sided alternative (i.e., compliance well mean larger
# than 7 ppb).
dev.new()
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 8, alpha = 0.01,
alternative = "greater", ylim = c(0, 1), main = "")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 6, alpha = 0.01,
alternative = "greater", add = TRUE, plot.col = "red")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 4, alpha = 0.01,
alternative = "greater", add = TRUE, plot.col = "blue")
legend("topleft", paste("N =", c(8, 6, 4)), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")
title(main = paste("Power vs. Scaled Difference for One-Sample t-Test",
"with Alpha=0.01 and Various Sample Sizes", sep="\n"))
#==========
# Clean up
#---------
graphics.off()
# }
Run the code above in your browser using DataLab