# NOT RUN {
# Generate 20 observations from a gamma distribution with parameters
# shape=3 and scale=2, then create a tolerance interval.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)
set.seed(250)
dat <- rgamma(20, shape = 3, scale = 2)
tolIntGamma(dat)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.203862
# scale = 2.174928
#
#Estimation Method: mle
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of 'shape'
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 95%
#
#Number of Future Observations: 1
#
#Tolerance Interval: LTL = 0.2340438
# UTL = 21.2996464
#--------------------------------------------------------------------
# Using the same data as in the previous example, create an upper
# one-sided tolerance interval and use the bias-corrected estimate of
# shape.
tolIntGamma(dat, ti.type = "upper", est.method = "bcmle")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 1.906616
# scale = 2.514005
#
#Estimation Method: bcmle
#
#Data: dat
#
#Sample Size: 20
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on bcmle of 'shape'
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.00000
# UTL = 17.72107
#----------
# Clean up
rm(dat)
#--------------------------------------------------------------------
# Example 17-3 of USEPA (2009, p. 17-17) shows how to construct a
# beta-content upper tolerance limit with 95% coverage and 95%
# confidence using chrysene data and assuming a lognormal
# distribution. Here we will use the same chrysene data but assume a
# gamma distribution.
attach(EPA.09.Ex.17.3.chrysene.df)
Chrysene <- Chrysene.ppb[Well.type == "Background"]
#----------
# First perform a goodness-of-fit test for a gamma distribution
gofTest(Chrysene, dist = "gamma")
#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF Based on
# Chen & Balakrisnan (1995)
#
#Hypothesized Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.806929
# scale = 5.286026
#
#Estimation Method: mle
#
#Data: Chrysene
#
#Sample Size: 8
#
#Test Statistic: W = 0.9156306
#
#Test Statistic Parameter: n = 8
#
#P-value: 0.3954223
#
#Alternative Hypothesis: True cdf does not equal the
# Gamma Distribution.
#----------
# Now compute the upper tolerance limit
tolIntGamma(Chrysene, ti.type = "upper", coverage = 0.95,
conf.level = 0.95)
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 2.806929
# scale = 5.286026
#
#Estimation Method: mle
#
#Data: Chrysene
#
#Sample Size: 8
#
#Tolerance Interval Coverage: 95%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Kulkarni & Powar (2010)
# transformation to Normality
# based on mle of 'shape'
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.00000
# UTL = 69.32425
#----------
# Compare this upper tolerance limit of 69 ppb to the upper tolerance limit
# assuming a lognormal distribution.
tolIntLnorm(Chrysene, ti.type = "upper", coverage = 0.95,
conf.level = 0.95)$interval$limits["UTL"]
# UTL
#90.9247
#----------
# Clean up
rm(Chrysene)
detach("EPA.09.Ex.17.3.chrysene.df")
#--------------------------------------------------------------------
# Reproduce some of the example on page 73 of
# Krishnamoorthy et al. (2008), which uses alkalinity concentrations
# reported in Gibbons (1994) and Gibbons et al. (2009) to construct
# two-sided and one-sided upper tolerance limits for various values
# of coverage using a 95% confidence level.
tolIntGamma(Gibbons.et.al.09.Alkilinity.vec, ti.type = "upper",
coverage = 0.9, normal.approx.transform = "cube.root")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 9.375013
# scale = 6.202461
#
#Estimation Method: mle
#
#Data: Gibbons.et.al.09.Alkilinity.vec
#
#Sample Size: 27
#
#Tolerance Interval Coverage: 90%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Wilson & Hilferty (1931) cube-root
# transformation to Normality
#
#Tolerance Interval Type: upper
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 0.00000
# UTL = 97.70502
tolIntGamma(Gibbons.et.al.09.Alkilinity.vec,
coverage = 0.99, normal.approx.transform = "cube.root")
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): shape = 9.375013
# scale = 6.202461
#
#Estimation Method: mle
#
#Data: Gibbons.et.al.09.Alkilinity.vec
#
#Sample Size: 27
#
#Tolerance Interval Coverage: 99%
#
#Coverage Type: content
#
#Tolerance Interval Method: Exact using
# Wilson & Hilferty (1931) cube-root
# transformation to Normality
#
#Tolerance Interval Type: two-sided
#
#Confidence Level: 95%
#
#Tolerance Interval: LTL = 13.14318
# UTL = 148.43876
# }
Run the code above in your browser using DataLab