Learn R Programming

EnvStats (version 2.8.1)

FcnsByCatEstDistQuants: EnvStats Functions for Estimating Distribution Quantiles

Description

The EnvStats functions listed below are useful for estimating distribution quantiles and, for some functions, optionally constructing confidence intervals for a quantile.

Arguments

Details

Function NameDescription
eqbetaEstimate quantiles of a Beta distribution.
eqbinomEstimate quantiles of a Binomial distribution.
eqexpEstimate quantiles of an Exponential distribution.
eqevdEstimate quantiles of an Extreme Value distribution.
eqgammaEstimate quantiles of a Gamma distribution
using the Shape and Scale Parameterization, and optionally
construct a confidence interval for a quantile.
eqgammaAltEstimate quantiles of a Gamma distribution
using the mean and CV Parameterization, and optionally
construct a confidence interval for a quantile.
eqgevdEstimate quantiles of a Generalized Extreme Value distribution.
eqgeomEstimate quantiles of a Geometric distribution.
eqhyperEstimate quantiles of a Hypergeometric distribution.
eqlogisEstimate quantiles of a Logistic distribution.
eqlnormEstimate quantiles of a Lognormal distribution (log-scale),
and optionally construct a confidence interval for a quantile.
eqlnorm3Estimate quantiles of a Three-Parameter Lognormal distribution.
eqnbinomEstimate quantiles of a Negative Binomial distribution.
eqnormEstimate quantiles of a Normal distribution,
and optionally construct a confidence interval for a quantile.
eqparetoEstimate quantiles of a Pareto distribution.
eqpoisEstimate quantiles of a Poisson distribution,
and optionally construct a confidence interval for a quantile.
equnifEstimate quantiles of a Uniform distribution.
eqweibullEstimate quantiles of a Weibull distribution.
eqzmlnormEstimate quantiles of a Zero-Modified Lognormal (Delta)
distribution (log-scale).
eqzmlnormAltEstimate quantiles of a Zero-Modified Lognormal (Delta)
distribution (original scale).
eqzmnormEstimate quantiles of a Zero-Modified Normal distribution.