# Create an object of class "distChooseCensored", then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)
set.seed(598)
dat <- rgammaAlt(30, mean = 10, cv = 1)
censored <- dat < 5
dat[censored] <- 5
distChooseCensored.obj <- distChooseCensored(dat, censored,
method = "sw", choices = c("norm", "gammaAlt", "lnormAlt"))
mode(distChooseCensored.obj)
#[1] "list"
class(distChooseCensored.obj)
#[1] "distChooseCensored"
names(distChooseCensored.obj)
# [1] "choices" "method"
# [3] "decision" "alpha"
# [5] "distribution.parameters" "estimation.method"
# [7] "sample.size" "censoring.side"
# [9] "censoring.levels" "percent.censored"
#[11] "test.results" "data"
#[13] "censored" "data.name"
#[15] "censoring.name"
distChooseCensored.obj
#Results of Choosing Distribution
#--------------------------------
#
#Candidate Distributions: Normal
# Gamma
# Lognormal
#
#Choice Method: Shapiro-Wilk
#
#Type I Error per Test: 0.05
#
#Decision: Gamma
#
#Estimated Parameter(s): mean = 12.4911448
# cv = 0.7617343
#
#Estimation Method: MLE
#
#Data: dat.censored
#
#Sample Size: 30
#
#Censoring Side: left
#
#Censoring Variable: censored
#
#Censoring Level(s): 5
#
#Percent Censored: 23.33333%
#
#Test Results:
#
# Normal
# Test Statistic: W = 0.9372741
# P-value: 0.1704876
#
# Gamma
# Test Statistic: W = 0.9613711
# P-value: 0.522329
#
# Lognormal
# Test Statistic: W = 0.9292406
# P-value: 0.114511
#==========
# Extract the choices
#--------------------
distChooseCensored.obj$choices
#[1] "Normal" "Gamma" "Lognormal"
#==========
# Clean up
#---------
rm(dat, censored, distChooseCensored.obj)
Run the code above in your browser using DataLab