# Look at how the required sample size for a one-way ANOVA 
  # increases with increasing power:
  aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.8) 
  #[1] 21 
  aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.9) 
  #[1] 27 
  aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.95) 
  #[1] 33
  #----------------------------------------------------------------
  # Look at how the required sample size for a one-way ANOVA, 
  # given a fixed power, decreases with increasing variability 
  # in the population means:
  aovN(mu.vec = c(10, 10, 11), sigma=5) 
  #[1] 581 
  aovN(mu.vec = c(10, 10, 15), sigma = 5) 
  #[1] 25 
  aovN(mu.vec = c(10, 13, 15), sigma = 5) 
  #[1] 33 
  aovN(mu.vec = c(10, 15, 20), sigma = 5) 
  #[1] 10
  #----------------------------------------------------------------
  # Look at how the required sample size for a one-way ANOVA, 
  # given a fixed power, decreases with increasing values of 
  # Type I error:
  aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.001) 
  #[1] 89 
  aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.01) 
  #[1] 67 
  aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.05) 
  #[1] 50 
  aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.1) 
  #[1] 42
Run the code above in your browser using DataLab