# Create an object of class "boxcox", then print it out.
# (Note: the call to set.seed simply allows you to reproduce this example.)
set.seed(250)
x <- rlnormAlt(30, mean = 10, cv = 2)
dev.new()
hist(x, col = "cyan")
boxcox.list <- boxcox(x)
data.class(boxcox.list)
#[1] "boxcox"
names(boxcox.list)
# [1] "lambda" "objective" "objective.name"
# [4] "optimize" "optimize.bounds" "eps"
# [7] "data" "sample.size" "data.name"
#[10] "bad.obs"
boxcox.list
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
#
# lambda PPCC
# -2.0 0.5423739
# -1.5 0.6402782
# -1.0 0.7818160
# -0.5 0.9272219
# 0.0 0.9921702
# 0.5 0.9581178
# 1.0 0.8749611
# 1.5 0.7827009
# 2.0 0.7004547
boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation
#---------------------------------
#
#Objective Name: PPCC
#
#Data: x
#
#Sample Size: 30
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#Optimal Value: lambda = 0.04530789
#
#Value of Objective: PPCC = 0.9925919
#----------
# Clean up
#---------
rm(x, boxcox.list)
Run the code above in your browser using DataLab