# NOT RUN {
# A small bogus cohort
xcoh <- structure( list( id = c("A", "B", "C"),
birth = c("1952-07-14", "1954-04-01", "1987-06-10"),
entry = c("1965-08-04", "1972-09-08", "1991-12-23"),
exit = c("1997-06-27", "1995-05-23", "1998-07-24"),
fail = c(1, 0, 1) ),
.Names = c("id", "birth", "entry", "exit", "fail"),
row.names = c("1", "2", "3"),
class = "data.frame" )
# Convert the character dates into numerical variables (fractional years)
xcoh$bt <- cal.yr( xcoh$birth )
xcoh$en <- cal.yr( xcoh$entry )
xcoh$ex <- cal.yr( xcoh$exit )
# Define as Lexis object with timescales calendar time and age
Lcoh <- Lexis( entry = list( per=en ),
exit = list( per=ex, age=ex-bt ),
exit.status = factor( fail, 0:1, c("Alive","Dead") ),
data = xcoh )
str( Lcoh )
Lx <- Lcoh[,1:7]
# Data frame with clinical examination data, date of examination in per
clin <- data.frame( lex.id = c(1,1,3,2),
per = c(1977.3,1971.7,1996.2,1990.6),
bp = c(120,140,160,157),
chol = c(5,7,8,9) )
Lx
clin
# Works with time split BEFORE adding clinical data:
Lb <- addCov.Lexis( splitLexis( Lx,
time.scale="age",
breaks=seq(0,80,5) ),
clin,
exnam="clX" )
Lb
# With time split AFTER adding clinincal data, variable tfc is largely meaningless:
La <- splitLexis( addCov.Lexis( Lx,
clin,
exnam="clX" ),
breaks=seq(0,80,5),
time.scale="age" )
La
# }
Run the code above in your browser using DataLab