# NOT RUN {
## Estimate incidence rate of diabetes in Denmark (1996-2015) by
## age and sex
data(DMepi)
DMepi$agegrp <- cut(DMepi$A, seq(from=0, to=100, by=5))
inc.diab <- glm(cbind(X, Y.nD) ~ -1 + agegrp + sex, family=poisreg,
data=DMepi)
## The coefficients for agegrp are log incidence rates for men in each
## age group. The coefficient for sex is the log of the female:male
## incidence rate ratio.
summary(inc.diab)
## Smooth function with non-constant M/F RR:
requireNamespace("mgcv")
library( mgcv )
gam.diab <- gam( cbind(X, Y.nD) ~ s(A,by=sex) + sex,
family=poisreg,
data=DMepi)
## There is no need/use for Y.nD in prediction data frames:
nM <- data.frame( A=20:90, sex="M" )
nF <- data.frame( A=20:90, sex="F" )
## Rates are returned in units of (1 year)^-1, so we must scale the
## rates by hand:
matshade( nM$A, cbind( ci.pred(gam.diab, nM )*1000,
ci.pred(gam.diab, nF )*1000,
ci.exp( gam.diab,list(nM,nF)) ),
plot=TRUE, col=c("blue","red","black"),
log="y", xlab="Age", ylab="DM incidence rates per 1000 / M vs. F RR" )
abline(h=1)
# }
Run the code above in your browser using DataLab