Learn R Programming

EstimationTools (version 4.0.0)

summary.maxlogL: Summarize Maximum Likelihood Estimation

Description

[Maturing]

Displays maximum likelihood estimates computed with maxlogL with its standard errors, AIC and BIC. This is a summary method for maxlogL object.

Usage

# S3 method for maxlogL
summary(object, ...)

Value

A list with information that summarize results of a maxlogL class object.

Arguments

object

an object of maxlogL class which summary is desired.

...

additional arguments affecting the summary produced.

Author

Jaime Mosquera Gutiérrez, jmosquerag@unal.edu.co

Details

This summary method computes and displays AIC, BIC, estimates and standard errors from a estimated model stored i a maxlogL class object. It also displays and computes Z-score and p values of significance test of parameters.

See Also

maxlogL, maxlogLreg, bootstrap_maxlogL

Examples

Run this code
library(EstimationTools)

#--------------------------------------------------------------------------------
### First example: One known parameter

x <- rnorm(n = 10000, mean = 160, sd = 6)
theta_1 <- maxlogL(x = x, dist = 'dnorm', control = list(trace = 1),
                 link = list(over = "sd", fun = "log_link"),
                 fixed = list(mean = 160))
summary(theta_1)


#--------------------------------------------------------------------------------
# Second example: Binomial probability parameter estimation with variable
# creation

N <- rbinom(n = 100, size = 10, prob = 0.3)
phat <- maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),
                link = list(over = "prob", fun = "logit_link"))

## Standard error calculation method
print(phat$outputs$StdE_Method)

## 'summary' method
summary(phat)

#--------------------------------------------------------------------------------
# Third example: Binomial probability parameter estimation with no variable
# creation

N <- rbinom(n = 100, size = 10, prob = 0.3)
summary(maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),
                link = list(over = "prob", fun = "logit_link")))

#--------------------------------------------------------------------------------
# Fourth example: Estimation in a regression model with simulated normal data
n <- 1000
x <- runif(n = n, -5, 6)
y <- rnorm(n = n, mean = -2 + 3 * x, sd = exp(1 + 0.3* x))
norm_data <- data.frame(y = y, x = x)
formulas <- list(sd.fo = ~ x, mean.fo = ~ x)

norm_mod <- maxlogLreg(formulas, y_dist = y ~ dnorm, data = norm_data,
                       link = list(over = "sd", fun = "log_link"))

## 'summary' method
summary(norm_mod)


#--------------------------------------------------------------------------------

Run the code above in your browser using DataLab