Learn R Programming

EvaluationMeasures (version 1.1.0)

EvaluationMeasures.Precision: EvaluationMeasures.Precision

Description

Precision of prediction

Usage

EvaluationMeasures.Precision(Real = NULL, Predicted = NULL, Positive = 1, TP = NULL, TN = NULL, FP = NULL, FN = NULL)

Arguments

Real
Real binary values of the class
Predicted
Predicted binary values of the class
Positive
Consider 1 label as Positive Class unless changing this parameter to 0
TP
Number of True Positives. Number of 1 in real which is 1 in predicted.
TN
Number of True Negatives. Number of 0 in real which is 0 in predicted.
FP
Number of False Positives. Number of 0 in real which is 1 in predicted.
FN
Number of False Negatives. Number of 1 in real which is 0 in predicted.

Value

Precision

Details

Precision is What fraction of positive predicted are real positive.

By getting the predicted and real values or number of TP,TN,FP,FN return the Precision or Positive Predicted Value of model

Examples

Run this code
EvaluationMeasures.Precision(c(1,0,1,0,1,0,1,0),c(1,1,1,1,1,1,0,0))

Run the code above in your browser using DataLab