# Parameter estimation
n <- 500
mu <- 1
b <- 2
X <- rLaplace(n, mu, b)
(est.par <- eLaplace(X))
# Histogram and fitted density
den.x <- seq(min(X),max(X),length=100)
den.y <- dLaplace(den.x,mu=est.par$mu,b=est.par$b)
hist(X, breaks=10, col="red", probability=TRUE, ylim=c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue", lwd=2)
# Q-Q plot and P-P plot
plot(qLaplace((1:n-0.5)/n, params=est.par), sort(X), main="Q-Q Plot",
xlab="Theoretical Quantiles", ylab="Sample Quantiles", xlim=c(-5,5), ylim=c(-5,5))
abline(0,1)
plot((1:n-0.5)/n, pLaplace(sort(X), params=est.par), main="P-P Plot",
xlab="Theoretical Percentile", ylab="Sample Percentile", xlim=c(0,1), ylim=c(0,1))
abline(0,1)
# A weighted parameter estimation example
n <- 10
par <- list(mu=1, b=2)
X <- rLaplace(n, params=par)
w <- c(0.13, 0.06, 0.16, 0.07, 0.2, 0.01, 0.06, 0.09, 0.1, 0.12)
eLaplace(X,w) # estimated parameters of weighted sample
eLaplace(X) # estimated parameters of unweighted sample
# Alternative parameter estimation methods
eLaplace(X, method="numerical.MLE")
# Extracting location or scale parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]
# evaluate the performance of the parameter estimation function by simulation
eval.estimation(rdist=rLaplace,edist=eLaplace,n=1000, rep.num=1e3, params=list(mu=1, b=2))
eval.estimation(rdist=rLaplace,edist=eLaplace,n=1000, rep.num=1e3, params=list(mu=1, b=2),
method ="analytical.MLE")
# evaluate the precision of estimation by Hessian matrix
X <- rLaplace(1000, mu, b)
(est.par <- eLaplace(X))
H <- attributes(eLaplace(X, method="numerical.MLE"))$nll.hessian
fisher_info <- solve(H)
sqrt(diag(fisher_info))
# log-likelihood, score vector and observed information matrix
lLaplace(X,param=est.par)
lLaplace(X,param=est.par, logL=FALSE)
Run the code above in your browser using DataLab