# Parameter estimation
n <- 500
mean <- 1
sd <- 2
X <- rNormal(n, mean, sd)
(est.par <- eNormal(X))
# Histogram and fitted density
den.x <- seq(min(X),max(X),length=100)
den.y <- dNormal(den.x,mean=est.par$mean,sd=est.par$sd)
hist(X, breaks=10, col="red", probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue", lwd=2)
# Q-Q plot and P-P plot
plot(qNormal((1:n-0.5)/n, params=est.par), sort(X), main="Q-Q Plot",
xlab="Theoretical Quantiles", ylab="Sample Quantiles", xlim = c(-5,5), ylim = c(-5,5))
abline(0,1)
plot((1:n-0.5)/n, pNormal(sort(X), params=est.par), main="P-P Plot",
xlab="Theoretical Percentile", ylab="Sample Percentile", xlim = c(0,1), ylim = c(0,1))
abline(0,1)
# A weighted parameter estimation example
n <- 10
par <- list(mean=1, sd=2)
X <- rNormal(n, params=par)
w <- c(0.13, 0.06, 0.16, 0.07, 0.2, 0.01, 0.06, 0.09, 0.1, 0.12)
eNormal(X,w) # estimated parameters of weighted sample
eNormal(X) # estimated parameters of unweighted sample
# Alternative parameter estimation methods
eNormal(X, method = "numerical.MLE")
eNormal(X, method = "bias.adjusted.MLE")
mean(X); sd(X); sd(X)*sqrt((n-1)/n)
# Extracting location or scale parameters
est.par[attributes(est.par)$par.type=="location"]
est.par[attributes(est.par)$par.type=="scale"]
# evaluate the performance of the parameter estimation function by simulation
eval.estimation(rdist=rNormal,edist=eNormal,n = 1000, rep.num = 1e3, params = list(mean=1, sd=2))
eval.estimation(rdist=rNormal,edist=eNormal,n = 1000, rep.num = 1e3, params = list(mean=1, sd=2),
method ="analytical.MLE")
# evaluate the precision of estimation by Hessian matrix
X <- rNormal(1000, mean, sd)
(est.par <- eNormal(X))
H <- attributes(eNormal(X, method = "numerical.MLE"))$nll.hessian
fisher_info <- solve(H)
sqrt(diag(fisher_info))
# log-likelihood, score vector and observed information matrix
lNormal(X,param = est.par)
lNormal(X,param = est.par, logL=FALSE)
sNormal(X,param = est.par)
iNormal(X,param = est.par)
Run the code above in your browser using DataLab