powered by
S3 methods for manipulating eDist objects
# S3 method for eDist logLik(object, ...)# S3 method for eDist AIC(object, ..., k = 2)AICc(object)# S3 method for eDist AICc(object, ...)# S3 method for eDist vcov(object, ..., corr = FALSE)BIC(object)# S3 method for eDist BIC(object, ...)MDL(object)# S3 method for eDist MDL(object, ...)# S3 method for eDist print(x, ...)# S3 method for eDist plot(x, ...)
# S3 method for eDist AIC(object, ..., k = 2)
AICc(object)
# S3 method for eDist AICc(object, ...)
# S3 method for eDist vcov(object, ..., corr = FALSE)
BIC(object)
# S3 method for eDist BIC(object, ...)
MDL(object)
# S3 method for eDist MDL(object, ...)
# S3 method for eDist print(x, ...)
# S3 method for eDist plot(x, ...)
x An object of class eDist, usually the output of a parameter estimation function.
Additional parameters
numeric, The penalty per parameter to be used; the default k = 2 is the classical AIC.
logical; should vcov() return correlation matrix (instead of variance-covariance matrix).
A list to be returned as class eDist.
logical; if TRUE histogram, P-P and Q-Q plot of the distribution returned else only parameter estimation is returned.
A. Jonathan R. Godfrey, Sarah Pirikahu, and Haizhen Wu.
Myung, I. (2000). The Importance of Complexity in Model Selection. Journal of mathematical psychology, 44(1), 190-204.
X <- rnorm(20) est.par <- eNormal(X, method ="numerical.MLE") logLik(est.par) AIC(est.par) AICc(est.par) BIC(est.par) MDL(est.par) vcov(est.par) vcov(est.par,corr=TRUE) print(est.par) plot(est.par)
Run the code above in your browser using DataLab