## Setting up item names for fake data
itemNames <- c('C6', 'GF5', 'BMT5', 'B1', 'GP2', 'O2', 'ACT11', 'O1', 'GP1',
'ACT10', 'BL2', 'Cx6', 'AI1')
set.seed(6375309)
## Generating random item responses for 8 fake respondents
exampleDat <- t(replicate(8, sample(0:4, size = length(itemNames), replace = TRUE)))
## Making half of respondents missing about 10% of items,
## half missing about 50%.
miss10 <- t(replicate(4, sample(c(0, 9), prob = c(0.9, 0.1),
size = length(itemNames), replace = TRUE)))
miss50 <- t(replicate(4, sample(c(0, 9), prob = c(0.5, 0.5),
size = length(itemNames), replace = TRUE)))
missMtx <- rbind(miss10, miss50)
## Using 9 as the code for missing responses
exampleDat[missMtx == 9] <- 9
exampleDat <- as.data.frame(cbind(ID = paste0('ID', 1:8),
as.data.frame(exampleDat)))
names(exampleDat) <- c('ID', itemNames)
## Returns data frame with scale scores and with original items untouched
scoredDat <- scoreFACIT_AI(exampleDat)
names(scoredDat)
scoredDat
## Returns data frame with scale scores, with the appropriate items
## reverse scored, and with item values of 8 and 9 replaced with NA.
## Also illustrates the effect of setting keepNvalid = TRUE.
scoredDat <- scoreFACIT_AI(exampleDat, updateItems = TRUE, keepNvalid = TRUE)
names(scoredDat)
## Descriptives of scored scales
summary(scoredDat[, c('FACIT_AI')])
Run the code above in your browser using DataLab