## Setting up item names for fake data
G_names <- c(paste0('GP', 1:7),
paste0('GS', 1:7),
paste0('GE', 1:6),
paste0('GF', 1:7))
AC_names <- c('HI7', 'HI12', 'AA1', 'AA2', 'AA3', 'AA4', 'AA5', 'AA6', 'AA7', 'C5',
'AA8', 'BMT13', 'BRM5', 'MS3', 'BRM1', 'Cx6', 'AA9', 'TH5', 'B5', 'AA10',
'GA1', 'B1', 'O2')
itemNames <- c(G_names, AC_names)
## Generating random item responses for 8 fake respondents
set.seed(6375309)
exampleDat <- t(replicate(8, sample(0:4, size = length(itemNames), replace = TRUE)))
## Making half of respondents missing about 10% of items,
## half missing about 50%.
miss10 <- t(replicate(4, sample(c(0, 9), prob = c(0.9, 0.1),
size = length(itemNames), replace = TRUE)))
miss50 <- t(replicate(4, sample(c(0, 9), prob = c(0.5, 0.5),
size = length(itemNames), replace = TRUE)))
missMtx <- rbind(miss10, miss50)
## Using 9 as the code for missing responses
exampleDat[missMtx == 9] <- 9
exampleDat <- as.data.frame(cbind(ID = paste0('ID', 1:8),
as.data.frame(exampleDat)))
names(exampleDat) <- c('ID', itemNames)
## Returns data frame with scale scores and with original items untouched
scoredDat <- scoreFACT_AntiA(exampleDat)
names(scoredDat)
scoredDat
## Returns data frame with scale scores, with the appropriate items
## reverse scored, and with item values of 8 and 9 replaced with NA.
## Also illustrates the effect of setting keepNvalid = TRUE.
scoredDat <- scoreFACT_AntiA(exampleDat, updateItems = TRUE, keepNvalid = TRUE)
names(scoredDat)
## Descriptives of scored scales
summary(scoredDat[, c('PWB', 'SWB', 'EWB', 'FWB', 'FACTG',
'AntiAS', 'FACT_AntiA_TOTAL', 'FACT_AntiA_TOI')])
Run the code above in your browser using DataLab