# NOT RUN {
# The data are divided into one mandatory data-frame, the gene expressions,
# and two optional datasets: the covariates, and the annotations.
# The expression dataset with 9893 rows (genes) and 43 columns (arrays)
# containing the observations of the responses.
# The covariates dataset with 43 rows (arrays) and 6 columns:
# the second column gives the specification to match 'expression'
# and 'covariates' (array identification), the other ones contain
# the observations of covariates.
# The annotations dataset contains 9893 rows (genes) and
# 6 columns to help interpreting the factors, the first one (ID)
# identifies the variables (genes).
data(expression)
data(covariates)
data(annotations)
# Create the 'FAMTdata'
############################################
chicken = as.FAMTdata(expression,covariates,annotations,idcovar=2)
# 'FAMTdata' summary
summaryFAMT(chicken)
# }
Run the code above in your browser using DataLab