powered by
Density, distribution function, quantile function and random generation for the generalized Pareto distribution with shape and scale parameters equal to shape and scale, respectively.
shape
scale
dgp(x,shape=1,scale=1,log=FALSE) pgp(q,shape=1,scale=1,lower.tail=TRUE,log.p=FALSE) qgp(p,shape=1,scale=1,lower.tail=TRUE,log.p=FALSE) rgp(n,shape=1,scale=1)
vector of quantiles.
vector of probabilities.
number of observations.
shape parameter.
scale parameter.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X <= x],otherwise, P[X > x].
dgp gives the density, pgp gives the distribution function, qgp gives the quantile function, and rgp generates random deviates.
dgp
pgp
qgp
rgp
If X is a random variable distributed according to a generalized Pareto distribution, it has density
f(x) = 1/scale*(1-shape*x/scale)^((1-shape)/shape)
Coles, S. (2001) An introduction to statistical modeling of extreme values. Springer
# NOT RUN { x <- rgp(1000,-.2,10) hist(x,freq=FALSE,col='gray',border='white') curve(dgp(x,-.2,10),add=TRUE,col='red4',lwd=2) # }
Run the code above in your browser using DataLab