## S3 method for class 'FA':
deviance(object, ...)
## S3 method for class 'FA.general':
deviance(object, ...)
## S3 method for class 'FA.2ndorder':
deviance(object, ...)
## S3 method for class 'FA':
df.residual(object, ...)
## S3 method for class 'FA.general':
df.residual(object, ...)
## S3 method for class 'FA.2ndorder':
df.residual(object, ...)
## S3 method for class 'FA':
fitted(object, ...)
## S3 method for class 'FA.general':
fitted(object, ...)
## S3 method for class 'FA.2ndorder':
fitted(object, ...)
## S3 method for class 'FA':
influence(model, ...)
## S3 method for class 'FA.general':
influence(model, ...)
## S3 method for class 'FA.2ndorder':
influence(model, ...)
## S3 method for class 'FA':
model.matrix(object, ...)
## S3 method for class 'FA.general':
model.matrix(object, ...)
## S3 method for class 'FA.2ndorder':
model.matrix(object, ...)
## S3 method for class 'FA':
pairs(x, ...)
## S3 method for class 'FA.general':
pairs(x, ...)
## S3 method for class 'FA.2ndorder':
pairs(x, ...)
## S3 method for class 'FA':
predict(object, ...)
## S3 method for class 'FA.general':
predict(object, ...)
## S3 method for class 'FA.2ndorder':
predict(object, ...)
## S3 method for class 'FA':
residuals(object, ...)
## S3 method for class 'FA.general':
residuals(object, ...)
## S3 method for class 'FA.2ndorder':
residuals(object, ...)
## S3 method for class 'FA':
rstandard(model, ...)
## S3 method for class 'FA.general':
rstandard(model, ...)
## S3 method for class 'FA.2ndorder':
rstandard(model, ...)
## S3 method for class 'FA':
weights(object, ...)
## S3 method for class 'FA.general':
weights(object, ...)
## S3 method for class 'FA.2ndorder':
weights(object, ...)
residuals() * weights()
.Factanal
.model.matrix()
and fitted()
and thus
has uniquenesses along the diagonal.residuals
rescaled into a correlation
matrix and thus has ones along the diagonal.body()
on the method.FA
to see what
the function does. There is no difference in functionality for
the methods that inherit from class 'FA' relative to those that
are defined for class 'FA'.confint
, deviance
,
df.residual
, fitted
, influence
,
model.matrix
, pairs
, predict
,
residuals
, rstandard
, FA-class.## See the example for Factanal()
Run the code above in your browser using DataLab