Learn R Programming

FDRsampsize (version 1.0)

n.fdr: Find the sample size that meets desired FDR and power criteria

Description

Find smallest sample size that meets requirements for average power and FDR

Usage

n.fdr (ave.pow, fdr, pow.func, eff.size, null.effect, lam = 0.95, eps = 1e-04, n0 = 5, n1 = 500, tol = 1e-06, ...)

Arguments

ave.pow
required average power (scalar)
fdr
required FDR (scalar)
pow.func
name of R function that computes statistical power
eff.size
effect size vector
null.effect
Value of effect size that indicates null
lam
p-value at which to evaluate ensemble PDF
eps
epsilon for numerical differentiation
n0
smallest sample size to be considered for bisection
n1
maximum sample size to be considered for bisection
tol
tolerance for solving for alpha in iterations
...
additional agruments for the functions

Value

n
a sample size estimate
alpha
the p-value cut-off
fdr.hat
an approximation to the expected value of the FDR estimate given n
ave.pow
the average power
fdr.act
the actual FDR given n
pi.hat
expected value of the pi.hat estimator given n
act.pi
actual pi0

Details

This performs the sample size calculation without checking whether the minimum or maximum sample size satisfy the desired requirements. The fdr.sampsize function checks these conditions and then calls n.fdr. Thus, many users will may prefer to use the sampsize.fdr function instead of n.fdr.

References

A Onar-Thomas, S Pounds. "FDRsampsize: An R package to Perform Generalized Power and Sample Size Calculations for Planning Studies that use the False Discovery Rate to Measure Significance", Manuscript 2015. Pounds, Stan, and Cheng Cheng. "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271. Jung, Sin-Ho. "Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.