Learn R Programming

FDboost (version 1.1-2)

factorize: Factorize tensor product model

Description

Factorize an FDboost tensor product model into the response and covariate parts $$h_j(x, t) = \sum_{k} v_j^{(k)}(t) h_j^{(k)}(x), j = 1, ..., J,$$ for effect visualization as proposed in Stoecker, Steyer and Greven (2022).

Usage

factorize(x, ...)

# S3 method for FDboost factorize(x, newdata = NULL, newweights = 1, blwise = TRUE, ...)

Value

a list of two mboost models of class FDboost_fac containing basis functions for response and covariates, respectively, as base-learners.

A factorized model

Arguments

x

a model object of class FDboost.

...

other arguments passed to methods.

newdata

new data the factorization is based on. By default (NULL), the factorization is carried out on the data used for fitting.

newweights

vector of the length of the data or length one, containing new weights used for factorization.

blwise

logical, should the factorization be carried out base-learner-wise (TRUE, default) or for the whole model simultaneously.

Details

The mboost infrastructure is used for handling the orthogonal response directions \(v_j^{(k)}(t)\) in one mboost-object (with \(k\) running over iteration indices) and the effects into the respective directions \(h_j^{(k)}(t)\) in another mboost-object, both of subclass FDboost_fac. The number of boosting iterations of FDboost_fac-objects cannot be further increased as in regular mboost-objects.

References

Stoecker, A., Steyer L. and Greven, S. (2022): Functional additive models on manifolds of planar shapes and forms <arXiv:2109.02624>

See Also

[FDboost_fac-class]

Examples

Run this code
library(FDboost)

# generate irregular toy data -------------------------------------------------------

n <- 100
m <- 40
# covariates
x <- seq(0,2,len = n)
# time & id
set.seed(90384)
t <- runif(n = n*m, -pi,pi)
id <- sample(1:n, size = n*m, replace = TRUE)

# generate components
fx <- ft <- list()
fx[[1]] <- exp(x)
d <- numeric(2)
d[1] <- sqrt(c(crossprod(fx[[1]])))
fx[[1]] <- fx[[1]] / d[1]
fx[[2]] <- -5*x^2
fx[[2]] <- fx[[2]] - fx[[1]] * c(crossprod(fx[[1]], fx[[2]])) # orthogonalize fx[[2]]
d[2] <- sqrt(c(crossprod(fx[[2]])))
fx[[2]] <- fx[[2]] / d[2]
ft[[1]] <- sin(t)
ft[[2]] <- cos(t)
ft[[1]] <- ft[[1]] / sqrt(sum(ft[[1]]^2))
ft[[2]] <- ft[[2]] / sqrt(sum(ft[[2]]^2))

mu1 <- d[1] * fx[[1]][id] * ft[[1]]
mu2 <- d[2] * fx[[2]][id] * ft[[2]]
# add linear covariate
ft[[3]] <- t^2 * sin(4*t) 
ft[[3]] <- ft[[3]] - ft[[1]] * c(crossprod(ft[[1]], ft[[3]]))
ft[[3]] <- ft[[3]] - ft[[2]] * c(crossprod(ft[[2]], ft[[3]]))
ft[[3]] <- ft[[3]] / sqrt(sum(ft[[3]]^2))
set.seed(9234)
fx[[3]] <- runif(0,3, n = length(x))
fx[[3]] <- fx[[3]] - fx[[1]] * c(crossprod(fx[[1]], fx[[3]]))
fx[[3]] <- fx[[3]] - fx[[2]] * c(crossprod(fx[[2]], fx[[3]]))
d[3] <- sqrt(sum(fx[[3]]^2))
fx[[3]] <- fx[[3]] / d[3]

mu3 <- d[3] * fx[[3]][id] * ft[[3]]

mu <- mu1 + mu2 + mu3
# add some noise
y <- mu + rnorm(length(mu), 0, .01)
# and noise covariate
z <- rnorm(n)

# fit FDboost model -------------------------------------------------------

dat <- list(y = y, x = x, t = t, x_lin = fx[[3]], id = id)
m <- FDboost(y ~ bbs(x, knots = 5, df = 2, differences = 0) + 
               # bbs(z, knots = 2, df = 2, differences = 0) + 
               bols(x_lin, intercept = FALSE, df = 2)
               , ~ bbs(t),
             id = ~ id, 
             offset = 0, #numInt = "Riemann", 
             control = boost_control(nu = 1), 
             data = dat)
MU <- split(mu, id)
PRED <- split(predict(m), id)
Ti <- split(t, id)
t0 <- seq(-pi, pi, length.out = 40)
MU <- do.call(cbind, Map(function(mu, t) approx(t, mu, t0)$y,
          MU, Ti)) 
PRED <- do.call(cbind, Map(function(mu, t) approx(t, mu, t0)$y,
            PRED, Ti))

opar <- par(mfrow = c(2,2))
image(t0, x, MU)
contour(t0, x, MU, add = TRUE)
image(t0, x, PRED)
contour(t0, x, PRED, add = TRUE)
persp(t0, x, MU, zlim = range(c(MU, PRED), na.rm = TRUE))
persp(t0, x, PRED, zlim = range(c(MU, PRED), na.rm = TRUE))
par(opar)

# factorize model ---------------------------------------------------------

fac <- factorize(m)

vi <- as.data.frame(varimp(fac$cov))
# if(require(lattice))
#   barchart(variable ~ reduction, group = blearner, vi, stack = TRUE)

cbind(d^2, sort(vi$reduction, decreasing = TRUE)[1:3])


x_plot <- list(x, x, fx[[3]])

cols <- c("cornflowerblue", "darkseagreen", "darkred")
opar <- par(mfrow = c(3,2))
wch <- c(1,2,10)
for(w in 1:length(wch)) {
  plot.mboost(fac$resp, which = wch[w], col = "darkgrey", ask = FALSE,
       main = names(fac$resp$baselearner[wch[w]]))
  lines(sort(t), ft[[w]][order(t)]*max(d), col = cols[w], lty = 2)
  plot(fac$cov, which = wch[w], 
       main = names(fac$cov$baselearner[wch[w]]))
  points(x_plot[[w]], d[w] * fx[[w]] / max(d), col = cols[w], pch = 3)
}
par(opar)

# re-compose predictions
preds <- lapply(fac, predict)
predf <- rowSums(preds$resp * preds$cov[id, ])
PREDf <- split(predf, id)
PREDf <- do.call(cbind, Map(function(mu, t) approx(t, mu, t0)$y,
                            PREDf, Ti))
opar <- par(mfrow = c(1,2))
image(t0,x, PRED, main = "original prediction")
contour(t0,x, PRED, add = TRUE)
image(t0,x,PREDf, main = "recomposed")
contour(t0,x, PREDf, add = TRUE)
par(opar)

stopifnot(all.equal(PRED, PREDf))

# check out other methods
set.seed(8399)
newdata_resp <- list(t = sort(runif(60, min(t), max(t))))
a <- predict(fac$resp, newdata = newdata_resp, which = 1:5)
plot(newdata_resp$t, a[, 1])
# coef method
cf <- coef(fac$resp, which = 1)


# check factorization on a new dataset ------------------------------------

t_grid <- seq(-pi,pi,len = 30)
x_grid <- seq(0,2,len = 30)
x_lin_grid <- seq(min(dat$x_lin), max(dat$x_lin), len = 30)

# use grid data for factorization
griddata <- expand.grid(
  # time 
  t = t_grid,
  # covariates
  x = x_grid,
  x_lin = 0
)

griddata_lin <- expand.grid(
  t = seq(-pi, pi, len = 30),
  x = 0,
  x_lin = x_lin_grid
)

griddata <- rbind(griddata, griddata_lin)

griddata$id <- as.numeric(factor(paste(griddata$x, griddata$x_lin, sep = ":")))

fac2 <- factorize(m, newdata = griddata)

ratio <- -max(abs(predict(fac$resp, which = 1))) / max(abs(predict(fac2$resp, which = 1)))

opar <- par(mfrow = c(3,2))
wch <- c(1,2,10)
for(w in 1:length(wch)) {
  plot.mboost(fac$resp, which = wch[w], col = "darkgrey", ask = FALSE,
                                main = names(fac$resp$baselearner[wch[w]]))
  
  lines(sort(griddata$t), 
        ratio*predict(fac2$resp, which = wch[w])[order(griddata$t)], 
        col = cols[w], lty = 2)
  plot(fac$cov, which = wch[w], 
       main = names(fac$cov$baselearner[wch[w]]))
  this_x <- fac2$cov$model.frame(which = wch[w])[[1]][[1]]
    lines(sort(this_x), 1/ratio*predict(fac2$cov, which = wch[w])[order(this_x)], 
          col = cols[w], lty = 1)
}
par(opar)

# check predictions
p <- predict(fac2$resp, which = 1)
library(FDboost)

# generate regular toy data --------------------------------------------------

n <- 100
m <- 40
# covariates
x <- seq(0,2,len = n)
# time 
t <- seq(-pi,pi,len = m)
# generate components
fx <- ft <- list()
fx[[1]] <- exp(x)
d <- numeric(2)
d[1] <- sqrt(c(crossprod(fx[[1]])))
fx[[1]] <- fx[[1]] / d[1]
fx[[2]] <- -5*x^2
fx[[2]] <- fx[[2]] - fx[[1]] * c(crossprod(fx[[1]], fx[[2]])) # orthogonalize fx[[2]]
d[2] <- sqrt(c(crossprod(fx[[2]])))
fx[[2]] <- fx[[2]] / d[2]
ft[[1]] <- sin(t)
ft[[2]] <- cos(t)
ft[[1]] <- ft[[1]] / sqrt(sum(ft[[1]]^2))
ft[[2]] <- ft[[2]] / sqrt(sum(ft[[2]]^2))
mu1 <- d[1] * fx[[1]] %*% t(ft[[1]])
mu2 <- d[2] * fx[[2]] %*% t(ft[[2]])
# add linear covariate
ft[[3]] <- t^2 * sin(4*t) 
ft[[3]] <- ft[[3]] - ft[[1]] * c(crossprod(ft[[1]], ft[[3]]))
ft[[3]] <- ft[[3]] - ft[[2]] * c(crossprod(ft[[2]], ft[[3]]))
ft[[3]] <- ft[[3]] / sqrt(sum(ft[[3]]^2))
set.seed(9234)
fx[[3]] <- runif(0,3, n = length(x))
fx[[3]] <- fx[[3]] - fx[[1]] * c(crossprod(fx[[1]], fx[[3]]))
fx[[3]] <- fx[[3]] - fx[[2]] * c(crossprod(fx[[2]], fx[[3]]))
d[3] <- sqrt(sum(fx[[3]]^2))
fx[[3]] <- fx[[3]] / d[3]
mu3 <- d[3] * fx[[3]] %*% t(ft[[3]])

mu <- mu1 + mu2 + mu3
# add some noise
y <- mu + rnorm(length(mu), 0, .01)
# and noise covariate
z <- rnorm(n)

# fit FDboost model -------------------------------------------------------

dat <- list(y = y, x = x, t = t, x_lin = fx[[3]])
m <- FDboost(y ~ bbs(x, knots = 5, df = 2, differences = 0) + 
               # bbs(z, knots = 2, df = 2, differences = 0) + 
               bols(x_lin, intercept = FALSE, df = 2)
               , ~ bbs(t), offset = 0, 
             control = boost_control(nu = 1), 
             data = dat)

opar <- par(mfrow = c(1,2))
image(t, x, t(mu))
contour(t, x, t(mu), add = TRUE)
image(t, x, t(predict(m)))
contour(t, x, t(predict(m)), add = TRUE)
par(opar)

# factorize model ---------------------------------------------------------

fac <- factorize(m)

vi <- as.data.frame(varimp(fac$cov))
# if(require(lattice))
#   barchart(variable ~ reduction, group = blearner, vi, stack = TRUE)

cbind(d^2, vi$reduction[c(1:2, 10)])


x_plot <- list(x, x, fx[[3]])

cols <- c("cornflowerblue", "darkseagreen", "darkred")
opar <- par(mfrow = c(3,2))
wch <- c(1,2,10)
for(w in 1:length(wch)) {
  plot.mboost(fac$resp, which = wch[w], col = "darkgrey", ask = FALSE,
       main = names(fac$resp$baselearner[wch[w]]))
  lines(t, ft[[w]]*max(d), col = cols[w], lty = 2)
  plot(fac$cov, which = wch[w], 
       main = names(fac$cov$baselearner[wch[w]]))
  points(x_plot[[w]], d[w] * fx[[w]] / max(d), col = cols[w], pch = 3)
}
par(opar)

# re-compose prediction
preds <- lapply(fac, predict)
PREDSf <- array(0, dim = c(nrow(preds$resp),nrow(preds$cov)))
for(i in 1:ncol(preds$resp))
  PREDSf <- PREDSf + preds$resp[,i] %*% t(preds$cov[,i])

opar <- par(mfrow = c(1,2))
image(t,x, t(predict(m)), main = "original prediction")
contour(t,x, t(predict(m)), add = TRUE)
image(t,x,PREDSf, main = "recomposed")
contour(t,x, PREDSf, add = TRUE)
par(opar)
# => matches
stopifnot(all.equal(as.numeric(t(predict(m))), as.numeric(PREDSf)))

# check out other methods
set.seed(8399)
newdata_resp <- list(t = sort(runif(60, min(t), max(t))))
a <- predict(fac$resp, newdata = newdata_resp, which = 1:5)
plot(newdata_resp$t, a[, 1])
# coef method
cf <- coef(fac$resp, which = 1)

Run the code above in your browser using DataLab