Learn R Programming

FENmlm (version 2.4.4)

AIC.femlm: Aikake's an information criterion

Description

This function computes the AIC (Aikake's, an information criterion) from a femlm estimation.

Usage

# S3 method for femlm
AIC(object, ..., k = 2)

Value

It return a numeric vector, with length the same as the number of objects taken as arguments.

Arguments

object

An object of class femlm. Typically the result of a femlm estimation.

...

Optionally, more fitted objects.

k

A numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC (i.e. AIC=-2*LL+k*nparams).

Author

Laurent Berge

Details

The AIC is computed as: $$AIC = -2\times LogLikelihood + k\times nbParams$$ with k the penalty parameter.

You can have more information on this crtierion on AIC.

See Also

femlm, AIC.femlm, logLik.femlm, nobs.femlm.

Examples

Run this code

# two fitted models with different expl. variables:
res1 = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +
            Petal.Width | Species, iris)
res2 = femlm(Sepal.Length ~ Petal.Width | Species, iris)

AIC(res1, res2)
BIC(res1, res2)


Run the code above in your browser using DataLab