Learn R Programming

FGN (version 2.0-12)

FitFGN: MLE estimation for FGN

Description

Exact MLE estimation for FGN

Usage

FitFGN(z, demean = TRUE, MeanMLEQ = FALSE, lag.max = "default")

Arguments

z
time series, vector or ts object.
demean
if True, subtract mean. Otherwise assume it is zero.
MeanMLEQ
if True, an iterative algorithm is used for exact simultaneous MLE estimation of the mean and other parameters.
lag.max
the residual autocorrelations are tabulated for lags 1, ..., lag.max. Also lag.max is used for the Ljung-Box portmanteau test.

Value

A list with class name "FitAR" and components:
loglikelihood
value of the loglikelihood
H
estimate of H parameter
SEH
SE of H estimate
sigsqHat
innovation variance estimate
muHat
estimate of the mean
SEmu
SE of mean
Rsq
R-squared, coefficient of forecastability
LjungBox
table of Ljung-Box portmanteau test statistics
res
normalized residuals, same length as z
demean
TRUE if mean estimated otherwise assumed zero
IterationCount
number of iterations in mean mle estimation
MLEMeanQ
TRUE if mle for mean algorithm used
tsp
tsp(z)
call
result from match.call() showing how the function was called
DataTitle
returns attr(z,"title")

Details

The exact loglikelihood function is maximized numerically using optimize. The standard error for the H parameter is estimated (McLeod, Yu and Krougly, 2007).

References

McLeod, A.I., Yu, Hao, Krougly, Zinovi L. (2007). Algorithms for Linear Time Series Analysis, Journal of Statistical Software.

See Also

GetFitFGN, FitRegressionFGN, Boot.FitFGN, coef.FitFGN, plot.FitFGN, print.FitFGN, summary.FitFGN, HurstK

Examples

Run this code
data(NileMin)
out<-FitFGN(NileMin)
summary(out)
plot(out)
coef(out)

Run the code above in your browser using DataLab