Learn R Programming

FGN (version 2.0-12)

earfima: Exact MLE for ARFIMA

Description

The time series is corrected for the sample mean and then exact MLE is used for the other parameters.

Usage

earfima(z, order = c(0, 0, 0), lmodel = c("FD", "FGN", "PLA", "NONE"))

Arguments

z
time series
order
(p,d,q) where p=order AR, d=regular difference, q=order MA
lmodel
type of long-memory component: FD, FGN, PLA or NONE

Value

list with components:
bHat
transformed optimal parameters
alphaHat
estimate of alpha
HHat
estimate of H
dHat
estimate of d
phiHat
estimate of phi
thetaHat
estimate of theta
wLL
optimized value of Whittle approximate log-likelihood
LL
corresponding exact log-likelihood
convergence
convergence indicator
algorithm
optimization algorithm used, 1 for L-BFGS-B, 2 for Nelder-Mead, 3 for SANN

Details

The sample mean is asymptotically efficient.

Examples

Run this code
z <- rnorm(100)
earfima(z, lmodel="FGN")

Run the code above in your browser using DataLab