Learn R Programming

FGNet (version 3.6.2)

FGNet-package: Functional gene networks derived from biological enrichment analyses

Description

Build and visualize functional gene and term networks from clustering of enrichment analyses in multiple annotation spaces. The package includes a graphical user interface (GUI) and functions to perform the functional enrichment analysis through DAVID, GeneTerm Linker, gage (GSEA) and topGO.

Arguments

Details

Package:
FGNet
Type:
Package
Version:
3.0
License:
GPL (>= 2)

References

[1] Fontanillo C, Nogales-Cadenas R, Pascual-Montano A, De Las Rivas J (2011) Functional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and Biological Terms. PLoS ONE 6(9): e24289. URL: http://gtlinker.cnb.csic.es [2] Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1):1-13. URL: http://david.abcc.ncifcrf.gov/ [3] Alexa A, and Rahnenfuhrer J (2010) topGO: Enrichment analysis for Gene Ontology. R package version 2.16.0. URL: http://www.bioconductor.org/packages/release/bioc/html/topGO.html [4] Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 10:161. URL: http://www.bioconductor.org/packages/release/bioc/html/gage.html

See Also

FGNet_GUI() provides a Graphical User Interface (GUI) to most of the functionalities of the package: Performing a Functional Enrichment Analysis (FEA) of a list of genes, and analyzing it through the functional networks.

1. The Functional Enrichment Analysis can be performed through several tools:

  • DAVID [1]: fea_david() (Requires internet connection)
  • GeneTerm Linker [2]: fea_gtLinker() & fea_gtLinker_getResults() (Requires internet connection)
  • topGO [3]: fea_topGO() (Only supports GO. For offline use requires having installed the required database packages)
  • GAGE [4]: fea_gage() (GSEA analysis. For offline use requires gene sets or installed database packages)

There are also a few functions to import the results from a previous FEA analysis: format_david(), format_results() and readGeneTermSets().

2. FGNet_report(): automatically generates a report with the default network options. It includes the following steps, wich can be executed individually to personalize or explore the networks:

  1. fea2incidMat(): Transforms the FEA output into incidence matrices. These function determines wether the network will be gene- or term-based.
  2. functionalNetwork(): Generates and plots the functional networks. These networks can be further explored by analyzeNetwork() and clustersDistance().

Other auxiliary functions: getTerms(), keywordsTerm(), plotGoAncestors(), plotKegg().

For more info see the package tutorial: vignette("FGNet-vignette")

Examples

Run this code

## Not run: 
# # GUI:
# FGNet_GUI()
# 
# 
# # 1. FEA:
# geneList <- c("YBL084C", "YDL008W", "YDR118W", "YDR301W", "YDR448W", "YFR036W", 
#     "YGL240W", "YHR166C", "YKL022C", "YLR102C", "YLR115W", "YLR127C", "YNL172W", 
#     "YOL149W", "YOR249C")
#     
# library(org.Sc.sgd.db)
# geneLabels <- unlist(as.list(org.Sc.sgdGENENAME)[geneList])
# 
# # Optional: Gene expression 
# geneExpr <- setNames(c(rep(1,10),rep(-1,5)), geneLabels)
# 
# # Choose FEA tool...
# # results <- fea_david(geneList, geneLabels=geneLabels, email="example@email.com")
# results <- fea_gtLinker_getResults(jobID=3907019)
# 
# # 2 A) Report:
# FGNet_report(results, geneExpr=geneExpr)
# 
# # 2 B) Step by step:
# # 2.1. Create incidence matrices:
# incidMat <- fea2incidMat(results)
# incidMat_terms <- fea2incidMat(results, key="Terms")
# 
# # 2.2. Explore networks:
# functionalNetwork(incidMat, geneExpr=geneExpr)
# functionalNetwork(incidMat_terms, plotType="bipartite", plotOutput="dynamic")
# getTerms(results)
# 
# nwStats <- analyzeNetwork(incidMat)
# clustersDistance(incidMat)
# ## End(Not run)

Run the code above in your browser using DataLab