## Not run:
# # GUI:
# FGNet_GUI()
#
#
# # 1. FEA:
# geneList <- c("YBL084C", "YDL008W", "YDR118W", "YDR301W", "YDR448W", "YFR036W",
# "YGL240W", "YHR166C", "YKL022C", "YLR102C", "YLR115W", "YLR127C", "YNL172W",
# "YOL149W", "YOR249C")
#
# library(org.Sc.sgd.db)
# geneLabels <- unlist(as.list(org.Sc.sgdGENENAME)[geneList])
#
# # Optional: Gene expression
# geneExpr <- setNames(c(rep(1,10),rep(-1,5)), geneLabels)
#
# # Choose FEA tool...
# # results <- fea_david(geneList, geneLabels=geneLabels, email="example@email.com")
# results <- fea_gtLinker_getResults(jobID=3907019)
#
# # 2 A) Report:
# FGNet_report(results, geneExpr=geneExpr)
#
# # 2 B) Step by step:
# # 2.1. Create incidence matrices:
# incidMat <- fea2incidMat(results)
# incidMat_terms <- fea2incidMat(results, key="Terms")
#
# # 2.2. Explore networks:
# functionalNetwork(incidMat, geneExpr=geneExpr)
# functionalNetwork(incidMat_terms, plotType="bipartite", plotOutput="dynamic")
# getTerms(results)
#
# nwStats <- analyzeNetwork(incidMat)
# clustersDistance(incidMat)
# ## End(Not run)
Run the code above in your browser using DataLab